Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
Chemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah, 23622, Saudi Arabia.
Environ Sci Pollut Res Int. 2020 Jul;27(19):24173-24189. doi: 10.1007/s11356-020-08149-w. Epub 2020 Apr 17.
The present work describes the synthesis of α-MnO nanorods using a natural extract of Brassica oleracea (cabbage) and the formulation of its nanohybrids with polycarbazole, i.e., α-MnO/PCz. Synergistic interaction between PCz and MnO is revealed from infrared spectroscopy (IR) studies while the composition is determined by X-ray photoelectron spectroscopy (XPS). The formation of α-MnO nanorods is confirmed via high-resolution transmission electron microscopy (HRTEM). The indirect bandgap of α-MnO is reported as 2.5 eV while for the nanohybrids it is found to be ranging between 2.3 and 2.5 eV. Results show that 91% and 89% of degradation is achieved within 30 min and 90 min under the microwave and UV irradiation respectively. Hydroxyl radicals (OH) and superoxide (O) radicals are responsible for photocatalytic degradation of the drug Bactrim DS which is confirmed by radical scavenging experiments. The nanohybrids show promising catalytic activity under UV as well as microwave irradiation.
本工作描述了使用 Brassica oleracea(甘蓝)的天然提取物合成α-MnO 纳米棒,并将其与聚咔唑制成纳米杂化物,即α-MnO/PCz。红外光谱(IR)研究表明 PCz 和 MnO 之间存在协同相互作用,而 X 射线光电子能谱(XPS)则确定了组成。高分辨率透射电子显微镜(HRTEM)证实了α-MnO 纳米棒的形成。报道了α-MnO 的间接带隙为 2.5 eV,而对于纳米杂化物,发现其带隙在 2.3 到 2.5 eV 之间。结果表明,在微波和紫外辐射下分别在 30 分钟和 90 分钟内实现了 91%和 89%的降解。通过自由基清除实验证实,羟基自由基(OH)和超氧自由基(O)自由基负责药物 Bactrim DS 的光催化降解。纳米杂化物在紫外光和微波辐射下均表现出良好的催化活性。