Suppr超能文献

基于共价三嗪框架的构建及其在蜂蜜样品中多环芳烃固相微萃取中的应用。

Construction of covalent triazine-based frameworks and application to solid phase microextraction of polycyclic aromatic hydrocarbons from honey samples.

机构信息

Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.

Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China.

出版信息

Food Chem. 2020 Aug 30;322:126770. doi: 10.1016/j.foodchem.2020.126770. Epub 2020 Apr 7.

Abstract

Honey, a highly nutritious functional food, might be contaminated by polycyclic aromatic hydrocarbons (PAHs) during its production and/or harvest. The preconcentration and analysis of trace levels of PAHs from the complex sample matrices like honey still poses challenges for analytical researchers. In this study, three different covalent triazine-based frameworks (CTFs) were synthesized and explored as the solid-phase microextraction (SPME) coating for the extraction of some PAHs from various honey samples. Among the CTFs, cyanuric chloride-p-quaterphenyl (CC-QP) exhibited the highest extraction capability toward PAHs due to its largest specific surface area and π-electrons system. Under the optimum experimental conditions, the CC-QP based SPME method exhibited wide linearity (0.10-100 ng g), low limits of detection (0.03-0.19 ng g) and good reproducibility (relative standard deviations < 9.9%). The new SPME method coupled with chromatography-mass spectrometry detection was successfully applied for the determination of PAHs in honey samples with satisfactory recoveries (82.0-116.8%).

摘要

亲爱的,蜂蜜是一种高营养的功能性食品,但在生产和/或收获过程中可能会被多环芳烃(PAHs)污染。对于分析研究人员来说,从蜂蜜等复杂样品基质中痕量水平的 PAHs 的预浓缩和分析仍然具有挑战性。在本研究中,合成了三种不同的基于共价三嗪的骨架(CTFs),并将其探索为用于从各种蜂蜜样品中提取一些 PAHs 的固相微萃取(SPME)涂层。在 CTFs 中,由于其最大的比表面积和π-电子体系,三聚氯氰-对四苯(CC-QP)对 PAHs 表现出最高的萃取能力。在最佳实验条件下,基于 CC-QP 的 SPME 方法表现出宽的线性范围(0.10-100ng g)、低检测限(0.03-0.19ng g)和良好的重现性(相对标准偏差<9.9%)。新的 SPME 方法与色谱-质谱检测联用,成功应用于蜂蜜样品中 PAHs 的测定,回收率令人满意(82.0-116.8%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验