Kretz Tobias, Mueller Klaus-Robert, Schaeffter Tobias, Elster Clemens
IEEE Trans Biomed Eng. 2020 Dec;67(12):3317-3326. doi: 10.1109/TBME.2020.2983539. Epub 2020 Nov 20.
According to the European Reference Organization for Quality Assured Breast Cancer Screening and Diagnostic Services (EUREF) image quality in mammography is assessed by recording and analyzing a set of images of the CDMAM phantom. The EUREF procedure applies an automated analysis combining image registration, signal detection and nonlinear fitting. We present a proof of concept for an end-to-end deep learning framework that assesses image quality on the basis of single images as an alternative.
Virtual mammography is used to generate a database with known ground truth for training a regression convolutional neural net (CNN). Training is carried out by continuously extending the training data and applying transfer learning.
The trained net is shown to correctly predict the image quality of simulated and real images. Specifically, image quality predictions on the basis of single images are of similar quality as those obtained by applying the EUREF procedure with 16 images. Our results suggest that the trained CNN generalizes well.
Mammography image quality assessment can benefit from the proposed deep learning approach.
Deep learning avoids cumbersome pre-processing and allows mammography image quality to be estimated reliably using single images.
根据欧洲质量保证乳腺癌筛查与诊断服务参考组织(EUREF),乳腺钼靶摄影的图像质量是通过记录和分析一组CDMAM体模图像来评估的。EUREF程序采用了结合图像配准、信号检测和非线性拟合的自动分析方法。我们提出了一个端到端深度学习框架的概念验证,该框架可基于单幅图像评估图像质量,作为一种替代方法。
使用虚拟乳腺钼靶摄影生成一个具有已知真实情况的数据库,用于训练回归卷积神经网络(CNN)。通过不断扩展训练数据并应用迁移学习来进行训练。
经训练的网络能够正确预测模拟图像和真实图像的质量。具体而言,基于单幅图像的图像质量预测与应用EUREF程序对16幅图像进行评估所获得的预测质量相似。我们的结果表明,经训练的CNN具有良好的泛化能力。
乳腺钼靶摄影图像质量评估可从所提出的深度学习方法中受益。
深度学习避免了繁琐的预处理,并允许使用单幅图像可靠地估计乳腺钼靶摄影图像质量。