University of Exeter, Exeter, United Kingdom.
University of Manchester, Manchester, United Kingdom.
Biomed Phys Eng Express. 2024 May 15;10(4). doi: 10.1088/2057-1976/ad470b.
. To improve breast cancer risk prediction for young women, we have developed deep learning methods to estimate mammographic density from low dose mammograms taken at approximately 1/10th of the usual dose. We investigate the quality and reliability of the density scores produced on low dose mammograms focussing on how image resolution and levels of training affect the low dose predictions.. Deep learning models are developed and tested, with two feature extraction methods and an end-to-end trained method, on five different resolutions of 15,290 standard dose and simulated low dose mammograms with known labels. The models are further tested on a dataset with 296 matching standard and real low dose images allowing performance on the low dose images to be ascertained.s. Prediction quality on standard and simulated low dose images compared to labels is similar for all equivalent model training and image resolution versions. Increasing resolution results in improved performance of both feature extraction methods for standard and simulated low dose images, while the trained models show high performance across the resolutions. For the trained models the Spearman rank correlation coefficient between predictions of standard and low dose images at low resolution is 0.951 (0.937 to 0.960) and at the highest resolution 0.956 (0.942 to 0.965). If pairs of model predictions are averaged, similarity increases.. Deep learning mammographic density predictions on low dose mammograms are highly correlated with standard dose equivalents for feature extraction and end-to-end approaches across multiple image resolutions. Deep learning models can reliably make high quality mammographic density predictions on low dose mammograms.
为了提高年轻女性乳腺癌风险预测的准确性,我们开发了深度学习方法,以从低剂量乳房 X 光片中估计乳房密度,该低剂量乳房 X 光片的剂量约为常规剂量的十分之一。我们研究了在低剂量乳房 X 光片上产生的密度评分的质量和可靠性,重点关注图像分辨率和训练水平如何影响低剂量预测。
我们开发和测试了深度学习模型,这些模型采用了两种特征提取方法和一种端到端训练方法,针对五个不同分辨率的 15290 张标准剂量和已知标签的模拟低剂量乳房 X 光片进行了测试。这些模型还在具有 296 个匹配标准和真实低剂量图像的数据集上进行了测试,从而可以确定低剂量图像上的性能。
与标签相比,所有等效模型训练和图像分辨率版本的标准和模拟低剂量图像的预测质量都相似。提高分辨率可提高标准和模拟低剂量图像的两种特征提取方法的性能,而训练模型在所有分辨率下都表现出很高的性能。对于训练模型,低分辨率标准和低剂量图像预测之间的斯皮尔曼等级相关系数为 0.951(0.937 至 0.960),最高分辨率为 0.956(0.942 至 0.965)。如果对模型预测进行平均,则相似度会增加。
在多个图像分辨率上,基于深度学习的乳房密度预测在特征提取和端到端方法上与低剂量乳房 X 光片的标准剂量等效高度相关。深度学习模型可以可靠地对低剂量乳房 X 光片进行高质量的乳房密度预测。