Suppr超能文献

结构网络性能在脑室周围白质损伤痉挛性脑瘫的早期诊断中的应用。

Structural network performance for early diagnosis of spastic cerebral palsy in periventricular white matter injury.

机构信息

Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.

The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Brain Imaging Behav. 2021 Apr;15(2):855-864. doi: 10.1007/s11682-020-00295-6.

Abstract

Periventricular white matter injury (PWMI) is a common cause of spastic cerebral palsy (SCP). Diffusion tensor imaging (DTI) shows high sensitivity but moderate specificity for predicting SCP. The limited specificity may be due to the diverse and extensive brain injuries seen in infants with PWMI. We enrolled 72 infants with corrected age from 6 to 18 months in 3 groups: PWMI with SCP (n = 20), non-CP PWMI (n = 19), and control (n = 33) groups. We compared DTI-based brain network properties among the three groups and evaluated the diagnostic performance of brain network properties for SCP in PWMI infants. Our results show abnormal global parameters (reduced global and local efficiency, and increased shortest path length), and local parameters (reduced node efficiency) in the PWMI with SCP group. On logistic regression, the combined node efficiency of the bilateral precentral gyrus and right middle frontal gyrus had a high sensitivity (90%) and specificity (95%) for differentiating PWMI with SCP from non-CP PWMI, and significantly correlated with the Gross Motor Function Classification System scores. This study confirms that DTI-based brain network has great diagnostic performance for SCP in PWMI infants, and the combined node efficiency improves the diagnostic accuracy.

摘要

脑室周围白质损伤(PWMI)是痉挛性脑瘫(SCP)的常见原因。弥散张量成像(DTI)对预测 SCP 具有高灵敏度但中等特异性。特异性有限可能是由于 PWMI 婴儿中存在多种广泛的脑损伤。我们纳入了 3 组校正年龄为 6 至 18 个月的 72 名婴儿:伴有 SCP 的 PWMI(n=20)、非 CP PWMI(n=19)和对照组(n=33)。我们比较了三组之间基于 DTI 的脑网络特性,并评估了脑网络特性对 PWMI 婴儿 SCP 的诊断性能。我们的结果显示伴有 SCP 的 PWMI 组存在全局参数异常(降低的全局和局部效率,以及增加的最短路径长度)和局部参数异常(降低的节点效率)。在逻辑回归中,双侧中央前回和右侧额中回的联合节点效率对区分伴有 SCP 的 PWMI 与非 CP PWMI 具有高灵敏度(90%)和特异性(95%),并与粗大运动功能分类系统评分显著相关。这项研究证实,基于 DTI 的脑网络对 PWMI 婴儿的 SCP 具有很好的诊断性能,联合节点效率提高了诊断准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验