Suppr超能文献

利用卷积神经网络可以自动对计算机断层扫描上的鼻窦混浊进行容积评估。

Volumetric assessment of paranasal sinus opacification on computed tomography can be automated using a convolutional neural network.

作者信息

Humphries Stephen M, Centeno Juan Pablo, Notary Aleena M, Gerow Justin, Cicchetti Giuseppe, Katial Rohit K, Beswick Daniel M, Ramakrishnan Vijay R, Alam Rafeul, Lynch David A

机构信息

Department of Radiology, National Jewish Health, Denver, CO.

Department of Diagnostic Imaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.

出版信息

Int Forum Allergy Rhinol. 2020 Nov;10(11):1218-1225. doi: 10.1002/alr.22588. Epub 2020 Jun 15.

Abstract

BACKGROUND

Computed tomography (CT) plays a key role in evaluation of paranasal sinus inflammation, but improved, and standardized, objective assessment is needed. Computerized volumetric analysis has benefits over visual scoring, but typically relies on manual image segmentation, which is difficult and time-consuming, limiting practical applicability. We hypothesized that a convolutional neural network (CNN) algorithm could perform automatic, volumetric segmentation of the paranasal sinuses on CT, enabling efficient, objective measurement of sinus opacification. In this study we performed initial clinical testing of a CNN for fully automatic quantitation of paranasal sinus opacification in the diagnostic workup of patients with chronic upper and lower airway disease.

METHODS

Sinus CT scans were collected on 690 patients who underwent imaging as part of multidisciplinary clinical workup at a tertiary care respiratory hospital between April 2016 and November 2017. A CNN was trained to perform automatic segmentation using a subset of CTs (n = 180) that were segmented manually. A nonoverlapping set (n = 510) was used for testing. CNN opacification scores were compared with Lund-MacKay (LM) visual scores, pulmonary function test results, and other clinical variables using Spearman correlation and linear regression.

RESULTS

CNN scores were correlated with LM scores (rho = 0.82, p < 0.001) and with forced expiratory volume in 1 second (FEV ) percent predicted (rho = -0.21, p < 0.001), FEV /forced vital capacity ratio (rho = -0.27, p < 0.001), immunoglobulin E (rho = 0.20, p < 0.001), eosinophil count (rho = 0.28, p < 0.001), and exhaled nitric oxide (rho = 0.40, p < 0.001).

CONCLUSION

Segmentation of the paranasal sinuses on CT can be automated using a CNN, providing truly objective, volumetric quantitation of sinonasal inflammation.

摘要

背景

计算机断层扫描(CT)在评估鼻窦炎症中起着关键作用,但仍需要改进的、标准化的客观评估方法。计算机化体积分析比视觉评分有优势,但通常依赖于手动图像分割,这既困难又耗时,限制了实际应用。我们假设卷积神经网络(CNN)算法可以在CT上对鼻窦进行自动体积分割,从而实现对鼻窦混浊的高效、客观测量。在本研究中,我们对一个用于慢性上、下气道疾病患者诊断检查中全自动定量鼻窦混浊的CNN进行了初步临床测试。

方法

收集了2016年4月至2017年11月期间在一家三级护理呼吸医院接受多学科临床检查成像的690例患者的鼻窦CT扫描图像。使用手动分割的CT子集(n = 180)对CNN进行训练以执行自动分割。使用一个不重叠的集合(n = 510)进行测试。使用Spearman相关性和线性回归将CNN混浊评分与Lund-MacKay(LM)视觉评分、肺功能测试结果及其他临床变量进行比较。

结果

CNN评分与LM评分相关(rho = 0.82,p < 0.001),与1秒用力呼气量(FEV)预测百分比相关(rho = -0.21,p < 0.001),与FEV/用力肺活量比值相关(rho = -0.27,p < 0.001),与免疫球蛋白E相关(rho = 0.20,p < 0.001),与嗜酸性粒细胞计数相关(rho = 0.28,p < 0.001),与呼出一氧化氮相关(rho = 0.40,p < 0.001)。

结论

使用CNN可以实现CT上鼻窦的自动分割,为鼻窦炎症提供真正客观的体积定量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验