Suppr超能文献

利用 AutoML 提高鼻窦疾病检测能力:基于磁共振成像的高效人工智能开发和评估。

Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging.

机构信息

Royal National ENT and Eastman Dental Hospitals, University College London Hospitals NHS, London, UK.

Barts Health NHS Trust, London, UK.

出版信息

Eur Arch Otorhinolaryngol. 2024 Apr;281(4):2153-2158. doi: 10.1007/s00405-023-08424-9. Epub 2024 Jan 10.

Abstract

PURPOSE

Artificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal sinus diseases.

METHODS

The main target of this work was the usage of automated evaluation of model performance and the feasibility of the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies (OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE T2w MRI head sessions were used from the OASIS-3 repository.

RESULTS

The best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal disease on MRI.

CONCLUSION

AutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a feasibility study.

摘要

目的

人工智能(AI)形式的自动化机器学习(AutoML)为克服非技术培训医师的入门障碍提供了新的潜在突破。用于筛查目的的临床决策支持系统(CDSS)使用 AutoML 可以有助于减轻鼻窦疾病放射学工作流程中的临床负担。

方法

这项工作的主要目标是使用自动化评估模型性能和在 Google Cloud AutoML 平台上训练 Vertex AI 图像分类模型的可行性,以自动分类是否存在鼻窦疾病。该数据集是由三位专门的头颈部顾问放射科医师对共识标记的开放获取成像研究系列 3 期(OASIS-3)MRI 头部数据集进行的。总共使用了来自 OASIS-3 存储库的 1313 个独特的非 TSE T2w MRI 头部会话。

结果

表现最佳的图像分类模型达到了 0.928 的精度。证明了 Vertex AI 图像分类模型自动检测 MRI 上鼻窦疾病的存在与否的可行性和高性能。

结论

AutoML 允许潜在部署以优化诊断放射学工作流程,并为放射学和耳鼻喉科的进一步 AI 研究奠定基础。AutoML 的使用可以作为可行性研究的正式要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d163/10942883/d66d4f4f995c/405_2023_8424_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验