Suppr超能文献

多中心分析与 PI-RADS(v2.0)分类 3 病变中检测临床显著前列腺癌相关的临床和 MRI 特征。

Multicenter analysis of clinical and MRI characteristics associated with detecting clinically significant prostate cancer in PI-RADS (v2.0) category 3 lesions.

机构信息

Department of Urology, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY.

Department of Urology, Ronald Reagan UCLA Medical Center, Los Angeles, CA.

出版信息

Urol Oncol. 2020 Jul;38(7):637.e9-637.e15. doi: 10.1016/j.urolonc.2020.03.019. Epub 2020 Apr 17.

Abstract

OBJECTIVES

We sought to identify clinical and magnetic resonance imaging (MRI) characteristics in men with the Prostate Imaging - Reporting and Data System (PI-RADS) category 3 index lesions that predict clinically significant prostate cancer (CaP) on MRI targeted biopsy.

MATERIALS AND METHODS

Multicenter study of prospectively collected data for biopsy-naive men (n = 247) who underwent MRI-targeted and systematic biopsies for PI-RADS 3 index lesions. The primary endpoint was diagnosis of clinically significant CaP (Grade Group ≥2). Multivariable logistic regression models assessed for factors associated with clinically significant CaP. The probability distributions of clinically significant CaP based on different levels of predictors of multivariable models were plotted in a heatmap.

RESULTS

Men with clinically significant CaP had smaller prostate volume (39.20 vs. 55.10 ml, P < 0.001) and lower apparent diffusion coefficient (ADC) values (973 vs. 1068 μm/s, P = 0.013), but higher prostate-specific antigen (PSA) density (0.21 vs. 0.13 ng/ml, P = 0.027). On multivariable analyses, lower prostate volume (odds ratio [OR]: 0.95, 95% confidence interval [CI]: 0.92-0.97), lower ADC value (OR: 0.99, 95% CI: 0.99-1.00), and Prostate-specific antigen density >0.15 ng/ml (OR: 3.51, 95% CI 1.61-7.68) were independently associated with significant CaP.

CONCLUSION

Higher PSA density, lower prostate volume and ADC values are associated with clinically significant CaP in biopsy-naïve men with PI-RADS 3 lesions. We present regression-derived probabilities of detecting clinically significant CaP based on various clinical and imaging values that can be used in decision-making. Our findings demonstrate an opportunity for MRI refinement or biomarker discovery to improve risk stratification for PI-RADS 3 lesions.

摘要

目的

我们旨在确定前列腺成像报告和数据系统(PI-RADS)类别 3 索引病变的男性的临床和磁共振成像(MRI)特征,这些特征可预测 MRI 靶向活检中的临床显著前列腺癌(CaP)。

材料与方法

对 247 名接受 MRI 靶向和系统活检的活检初治男性(PI-RADS 3 指数病变)前瞻性收集的数据进行多中心研究。主要终点是诊断临床显著的 CaP(分级组≥2)。多变量逻辑回归模型评估与临床显著 CaP 相关的因素。根据多变量模型中不同预测因子水平绘制了临床显著 CaP 的概率分布热图。

结果

患有临床显著 CaP 的男性前列腺体积较小(39.20 与 55.10 ml,P<0.001),表观扩散系数(ADC)值较低(973 与 1068 μm/s,P=0.013),但前列腺特异性抗原(PSA)密度较高(0.21 与 0.13 ng/ml,P=0.027)。多变量分析显示,前列腺体积较小(比值比 [OR]:0.95,95%置信区间 [CI]:0.92-0.97)、ADC 值较低(OR:0.99,95% CI:0.99-1.00)和 PSA 密度>0.15 ng/ml(OR:3.51,95% CI 1.61-7.68)与显著 CaP 独立相关。

结论

在 PI-RADS 3 病变的活检初治男性中,较高的 PSA 密度、较低的前列腺体积和 ADC 值与临床显著 CaP 相关。我们提出了基于各种临床和影像学值检测临床显著 CaP 的回归衍生概率,可用于决策制定。我们的研究结果表明,有机会通过 MRI 优化或生物标志物发现来改善 PI-RADS 3 病变的风险分层。

相似文献

引用本文的文献

本文引用的文献

5
Artificial intelligence in radiology.人工智能在放射学中的应用。
Nat Rev Cancer. 2018 Aug;18(8):500-510. doi: 10.1038/s41568-018-0016-5.
6
MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis.MRI 靶向或标准活检用于前列腺癌诊断。
N Engl J Med. 2018 May 10;378(19):1767-1777. doi: 10.1056/NEJMoa1801993. Epub 2018 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验