Shimizu Azusa, Goh Wei Huang, Itai Shun, Hashimoto Michinao, Miura Shigenori, Onoe Hiroaki
School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-Ku, Yokohama, 223-8522, Japan.
Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
Lab Chip. 2020 Jun 2;20(11):1917-1927. doi: 10.1039/d0lc00254b.
We present an extracellular matrix (ECM)-based stretchable microfluidic system for culturing in vitro three-dimensional (3D) vascular tissues, which mimics in vivo blood vessels. Human umbilical vein endothelial cells (HUVECs) can be cultured under perfusion and stretch simultaneously with real-time imaging by our proposed system. Our ECM (transglutaminase (TG) cross-linked gelatin)-based microchannel was fabricated by dissolving water-soluble sacrificial polyvinyl alcohol (PVA) molds printed with a 3D printer. Flows in the microchannel were analyzed under perfusion and stretch. We demonstrated simultaneous perfusion and stretch of TG gelatin-based microchannels culturing HUVECs. We suggest that our TG gelatin-based stretchable microfluidic system proves to be a useful tool for understanding the mechanisms of vascular tissue formation and mechanotransduction.
我们展示了一种基于细胞外基质(ECM)的可拉伸微流控系统,用于体外培养三维(3D)血管组织,该系统可模拟体内血管。通过我们提出的系统,人脐静脉内皮细胞(HUVECs)能够在灌注和拉伸条件下同时进行培养,并进行实时成像。我们基于ECM(转谷氨酰胺酶(TG)交联明胶)的微通道是通过溶解用3D打印机打印的水溶性牺牲聚乙烯醇(PVA)模具制造而成。对微通道在灌注和拉伸条件下的流动进行了分析。我们证明了基于TG明胶的微通道能够同时对HUVECs进行灌注和拉伸。我们认为,我们基于TG明胶的可拉伸微流控系统被证明是理解血管组织形成和机械转导机制的有用工具。