Suppr超能文献

微流控与数值研究在血管流动与病变研究中的协同综述。

A Synergistic Overview between Microfluidics and Numerical Research for Vascular Flow and Pathological Investigations.

机构信息

Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh.

Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA.

出版信息

Sensors (Basel). 2024 Sep 10;24(18):5872. doi: 10.3390/s24185872.

Abstract

Vascular diseases are widespread, and sometimes such life-threatening medical disorders cause abnormal blood flow, blood particle damage, changes to flow dynamics, restricted blood flow, and other adverse effects. The study of vascular flow is crucial in clinical practice because it can shed light on the causes of stenosis, aneurysm, blood cancer, and many other such diseases, and guide the development of novel treatments and interventions. Microfluidics and computational fluid dynamics (CFDs) are two of the most promising new tools for investigating these phenomena. When compared to conventional experimental methods, microfluidics offers many benefits, including lower costs, smaller sample quantities, and increased control over fluid flow and parameters. In this paper, we address the strengths and weaknesses of computational and experimental approaches utilizing microfluidic devices to investigate the rheological properties of blood, the forces of action causing diseases related to cardiology, provide an overview of the models and methodologies of experiments, and the fabrication of devices utilized in these types of research, and portray the results achieved and their applications. We also discuss how these results can inform clinical practice and where future research should go. Overall, it provides insights into why a combination of both CFDs, and experimental methods can give even more detailed information on disease mechanisms recreated on a microfluidic platform, replicating the original biological system and aiding in developing the device or chip itself.

摘要

血管疾病广泛存在,有时这些危及生命的医学疾病会导致异常的血流、血液颗粒损伤、流动力学变化、血流受限等不良影响。血管流动的研究在临床实践中至关重要,因为它可以揭示狭窄、动脉瘤、血液癌等多种疾病的原因,并指导新的治疗和干预措施的发展。微流控和计算流体动力学(CFD)是研究这些现象的最有前途的两种新工具。与传统的实验方法相比,微流控具有许多优势,包括更低的成本、更少的样本量以及对流体流动和参数的更大控制。在本文中,我们将讨论利用微流控设备研究血液流变学特性、引起心脏病学相关疾病的作用力的计算和实验方法的优缺点,概述用于此类研究的实验模型和方法以及设备的制造,并展示所取得的结果及其应用。我们还讨论了这些结果如何为临床实践提供信息,以及未来的研究方向。总的来说,它深入了解了为什么 CFD 和实验方法的结合可以在微流控平台上更详细地了解疾病机制,复制原始生物系统并有助于开发设备或芯片本身。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f1c/11435959/c12cf8980f72/sensors-24-05872-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验