Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
J Am Chem Soc. 2020 May 13;142(19):8580-8584. doi: 10.1021/jacs.0c02007. Epub 2020 May 1.
Herein, we report a new light-harvesting mixed-ligand Zr(IV)-based metal-organic framework (MOF),with underlying topology, encompassing the [Zr(μ-O)(μ-OH)(OC-)] cluster and an equimolar mixture of thiadiazole- and benzimidazole-functionalized ligands. The successful integration of ligands with similar structural features but with notable chemical distinction afforded the attainment of a highly efficient energy transfer (ET). Notably, the very strong spectral overlap between the emission spectrum of benzimidazole (energy donor) and the absorption spectrum of thiadiazole (energy acceptor) provided an ideal platform to achieve very rapid (picosecond time scale) and highly efficient energy transfer (around 90% efficiency), as evidenced by time-resolved spectroscopy. Remarkably, the ultrafast time-resolved experiments quantified for the first time the anticipated close proximity of the two linkers with an average distance of 17 Å. This finding paves the way for the design and synthesis of periodic MOFs affording very efficient and fast ET to mimic natural photosynthetic systems.
在此,我们报告了一种新的基于光收集的混合配体 Zr(IV) 金属有机骨架(MOF),具有底层拓扑结构,包含 [Zr(μ-O)(μ-OH)(OC-)] 簇和等摩尔比的噻二唑和苯并咪唑功能化配体的混合物。具有相似结构特征但具有显著化学差异的配体的成功整合提供了实现高效能量转移(ET)的途径。值得注意的是,苯并咪唑(能量供体)的发射光谱和噻二唑(能量受体)的吸收光谱之间非常强的光谱重叠提供了实现非常快速(皮秒时间尺度)和高效能量转移(效率约为 90%)的理想平台,这一点得到了时间分辨光谱的证实。值得注意的是,超快时间分辨实验首次定量地确定了两个链接器之间预期的接近程度,平均距离为 17 Å。这一发现为设计和合成周期性 MOF 铺平了道路,这些 MOF 可以提供非常高效和快速的 ET,以模拟自然光合作用系统。