Schaefer Charley, Laity Peter R, Holland Chris, McLeish Tom C B
Department of Physics, University of York, Heslington, York YO10 5DD, U.K.
Department of Materials Science and Engineering, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, U.K.
Macromolecules. 2020 Apr 14;53(7):2669-2676. doi: 10.1021/acs.macromol.9b02630. Epub 2020 Mar 27.
Silk is one of the most intriguing examples of biomolecular self-assembly, yet little is understood of molecular mechanisms behind the flow behavior generating these complex high-performance fibers. This work applies the polymer physics of entangled solution rheology to present a first microphysical understanding of silk in the linear viscoelastic regime. We show that silk solutions can be approximated as reptating polymers with "sticky" calcium bridges whose strength can be controlled through the potassium concentration. This approach provides a new window into critical microstructural parameters, in particular identifying the mechanism by which potassium and calcium ions are recruited as a powerful viscosity control in silk. Our model constitutes a viable starting point to understand not only the "flow-induced self-assembly" of silk fibers but also a broader range of phenomena in the emergent field of material-focused synthetic biology.
丝绸是生物分子自组装最引人入胜的例子之一,但对于产生这些复杂高性能纤维的流动行为背后的分子机制,人们了解甚少。这项工作应用缠结溶液流变学的聚合物物理学,对线粘弹性区域的丝绸进行了首次微观物理层面的理解。我们表明,丝绸溶液可以近似为具有“粘性”钙桥的爬行聚合物,其强度可以通过钾离子浓度来控制。这种方法为关键微观结构参数提供了一个新窗口,特别是确定了钾离子和钙离子作为丝绸中强大粘度控制因素的作用机制。我们的模型不仅是理解丝绸纤维“流动诱导自组装”的一个可行起点,也是理解以材料为重点的合成生物学新兴领域中更广泛现象的一个可行起点。