Wang Yi, Cao Jinde, Sun Gui-Quan, Li Jing
Department of Mathematics, Southeast University, Nanjing 210096, People's Republic of China.
Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Physica A. 2014 Oct 15;412:137-148. doi: 10.1016/j.physa.2014.06.038. Epub 2014 Jul 1.
Time delay, accounting for constant incubation period or sojourn times in an infective state, widely exists in most biological systems like epidemiological models. However, the effect of time delay on spatial epidemic models is not well understood. In this paper, spatial pattern of an epidemic model with both nonlinear incidence rate and time delay is investigated. In particular, we mainly focus on the effect of time delay on the formation of spatial pattern. Through mathematical analysis, we gain the conditions for Hopf bifurcation and Turing bifurcation, and find exact Turing space in parameter space. Furthermore, numerical results show that time delay has a significant effect on pattern formation. The simulation results may enrich the finding of patterns and may well capture some key features in the epidemic models.
时间延迟,考虑到在感染状态下的恒定潜伏期或停留时间,广泛存在于大多数生物系统中,如流行病学模型。然而,时间延迟对空间流行病模型的影响尚未得到很好的理解。本文研究了一个具有非线性发病率和时间延迟的流行病模型的空间模式。特别地,我们主要关注时间延迟对空间模式形成的影响。通过数学分析,我们得到了霍普夫分岔和图灵分岔的条件,并在参数空间中找到了精确的图灵空间。此外,数值结果表明时间延迟对模式形成有显著影响。模拟结果可能会丰富模式的发现,并很好地捕捉流行病模型中的一些关键特征。