Azose Jonathan J, Raftery Adrian E
Department of Statistics University of Washington, Seattle.
Ann Appl Stat. 2018 Jun;12(2):940-970. doi: 10.1214/18-aoas1175. Epub 2018 Jul 28.
The United Nations is the major organization producing and regularly updating probabilistic population projections for all countries. International migration is a critical component of such projections, and between-country correlations are important for forecasts of regional aggregates. However, in the data we consider there are 200 countries and only 12 data points, each one corresponding to a five-year time period. Thus a 200 × 200 correlation matrix must be estimated on the basis of 12 data points. Using Pearson correlations produces many spurious correlations. We propose a maximum estimator for the correlation matrix with an interpretable informative prior distribution. The prior serves to regularize the correlation matrix, shrinking untrustworthy elements towards zero. Our estimated correlation structure improves projections of net migration for regional aggregates, producing narrower projections of migration for Africa as a whole and wider projections for Europe. A simulation study confirms that our estimator outperforms both the Pearson correlation matrix and a simple shrinkage estimator when estimating a sparse correlation matrix.
联合国是为所有国家编制并定期更新概率人口预测的主要组织。国际移民是此类预测的关键组成部分,国家间的相关性对于区域总量预测很重要。然而,在我们所考虑的数据中,有200个国家,却只有12个数据点,每个数据点对应一个五年时间段。因此,必须基于12个数据点估计一个200×200的相关矩阵。使用皮尔逊相关性会产生许多虚假相关性。我们提出了一种具有可解释信息先验分布的相关矩阵最大似然估计器。该先验用于对相关矩阵进行正则化,将不可信元素向零收缩。我们估计的相关结构改进了区域总量净移民的预测,对整个非洲的移民预测范围变窄,对欧洲的预测范围变宽。一项模拟研究证实,在估计稀疏相关矩阵时,我们的估计器优于皮尔逊相关矩阵和简单收缩估计器。