Suppr超能文献

估计国际移民的大型相关矩阵。

Estimating Large Correlation Matrices for International Migration.

作者信息

Azose Jonathan J, Raftery Adrian E

机构信息

Department of Statistics University of Washington, Seattle.

出版信息

Ann Appl Stat. 2018 Jun;12(2):940-970. doi: 10.1214/18-aoas1175. Epub 2018 Jul 28.

Abstract

The United Nations is the major organization producing and regularly updating probabilistic population projections for all countries. International migration is a critical component of such projections, and between-country correlations are important for forecasts of regional aggregates. However, in the data we consider there are 200 countries and only 12 data points, each one corresponding to a five-year time period. Thus a 200 × 200 correlation matrix must be estimated on the basis of 12 data points. Using Pearson correlations produces many spurious correlations. We propose a maximum estimator for the correlation matrix with an interpretable informative prior distribution. The prior serves to regularize the correlation matrix, shrinking untrustworthy elements towards zero. Our estimated correlation structure improves projections of net migration for regional aggregates, producing narrower projections of migration for Africa as a whole and wider projections for Europe. A simulation study confirms that our estimator outperforms both the Pearson correlation matrix and a simple shrinkage estimator when estimating a sparse correlation matrix.

摘要

联合国是为所有国家编制并定期更新概率人口预测的主要组织。国际移民是此类预测的关键组成部分,国家间的相关性对于区域总量预测很重要。然而,在我们所考虑的数据中,有200个国家,却只有12个数据点,每个数据点对应一个五年时间段。因此,必须基于12个数据点估计一个200×200的相关矩阵。使用皮尔逊相关性会产生许多虚假相关性。我们提出了一种具有可解释信息先验分布的相关矩阵最大似然估计器。该先验用于对相关矩阵进行正则化,将不可信元素向零收缩。我们估计的相关结构改进了区域总量净移民的预测,对整个非洲的移民预测范围变窄,对欧洲的预测范围变宽。一项模拟研究证实,在估计稀疏相关矩阵时,我们的估计器优于皮尔逊相关矩阵和简单收缩估计器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8757/7164801/7c09ac131c1e/nihms-1029425-f0001.jpg

相似文献

1
Estimating Large Correlation Matrices for International Migration.估计国际移民的大型相关矩阵。
Ann Appl Stat. 2018 Jun;12(2):940-970. doi: 10.1214/18-aoas1175. Epub 2018 Jul 28.
2
Shrinkage estimators for covariance matrices.协方差矩阵的收缩估计量。
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.
3
Probabilistic population projections with migration uncertainty.考虑迁移不确定性的概率性人口预测。
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6460-5. doi: 10.1073/pnas.1606119113. Epub 2016 May 23.
5
Probabilistic County-Level Population Projections.概率县级人口预测。
Demography. 2023 Jun 1;60(3):915-937. doi: 10.1215/00703370-10772782.

本文引用的文献

1
Probabilistic population projections with migration uncertainty.考虑迁移不确定性的概率性人口预测。
Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6460-5. doi: 10.1073/pnas.1606119113. Epub 2016 May 23.
2
Bayesian Probabilistic Projection of International Migration.国际移民的贝叶斯概率预测
Demography. 2015 Oct;52(5):1627-50. doi: 10.1007/s13524-015-0415-0.
4
Sparse Covariance Matrix Estimation With Eigenvalue Constraints.具有特征值约束的稀疏协方差矩阵估计
J Comput Graph Stat. 2014 Apr;23(2):439-459. doi: 10.1080/10618600.2013.782818.
5
Challenges of Big Data Analysis.大数据分析的挑战
Natl Sci Rev. 2014 Jun;1(2):293-314. doi: 10.1093/nsr/nwt032.
9
Sparse estimation of a covariance matrix.协方差矩阵的稀疏估计。
Biometrika. 2011 Dec;98(4):807-820. doi: 10.1093/biomet/asr054.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验