Suppr超能文献

使用FHIR构建一个带有逻辑形式和答案注释的临床问题语料库。

Using FHIR to Construct a Corpus of Clinical Questions Annotated with Logical Forms and Answers.

作者信息

Soni Sarvesh, Gudala Meghana, Wang Daisy Zhe, Roberts Kirk

机构信息

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX.

Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL.

出版信息

AMIA Annu Symp Proc. 2020 Mar 4;2019:1207-1215. eCollection 2019.

Abstract

This paper describes a novel technique for annotating logical forms and answers for clinical questions by utilizing Fast Healthcare Interoperability Resources (FHIR). Such annotations are widely used in building the semantic parsing models (which aim at understanding the precise meaning of natural language questions by converting them to machine-understandable logical forms). These systems focus on reducing the time it takes for a user to get to information present in electronic health records (EHRs). Directly annotating questions with logical forms is a challenging task and involves a time-consuming step of concept normalization annotation. We aim to automate this step using the normalized codes present in a FHIR resource. Using the proposed approach, two annotators curated an annotated dataset of 1000 questions in less than 1 week. To assess the quality of these annotations, we trained a semantic parsing model which achieved an accuracy of 94.2% on this corpus.

摘要

本文描述了一种利用快速医疗保健互操作性资源(FHIR)为临床问题的逻辑形式和答案进行标注的新技术。此类标注在构建语义解析模型(旨在通过将自然语言问题转换为机器可理解的逻辑形式来理解其精确含义)中被广泛使用。这些系统致力于减少用户获取电子健康记录(EHR)中信息所需的时间。直接用逻辑形式标注问题是一项具有挑战性的任务,并且涉及概念归一化标注这一耗时步骤。我们旨在使用FHIR资源中存在的归一化代码来自动化这一步骤。使用所提出的方法,两名标注人员在不到1周的时间内精心整理了一个包含1000个问题的标注数据集。为了评估这些标注的质量,我们训练了一个语义解析模型,该模型在这个语料库上达到了94.2%的准确率。

相似文献

本文引用的文献

1
Document Retrieval for Biomedical Question Answering with Neural Sentence Matching.用于生物医学问答的神经句子匹配文档检索
Proc Int Conf Mach Learn Appl. 2018 Dec;2018:194-201. doi: 10.1109/ICMLA.2018.00036. Epub 2019 Jan 17.
5
Clinical information extraction applications: A literature review.临床信息提取应用:文献综述。
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.
7
Medical Question Answering for Clinical Decision Support.用于临床决策支持的医学问答
Proc ACM Int Conf Inf Knowl Manag. 2016 Oct;2016:297-306. doi: 10.1145/2983323.2983819.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验