Suppr超能文献

V(D)J 重组中突触复合体中的 DNA 弯曲:将古老的转座体颠倒过来。

DNA bending in the synaptic complex in V(D)J recombination: turning an ancestral transpososome upside down.

作者信息

Ciubotaru Mihai, Surleac Marius, Musat Mihaela G, Rusu Andreea M, Ionita Elena, Albu Paul C C

机构信息

Department of Immunobiology, Yale University School of Medicine, 300 Cedar St., TAC S620, New Haven, CT 06511, USA.

National Institute for Physics and Nuclear Engineering Horia Hulubei, Department of Life and Environmental Physics, Atomistilor Str., 077125, Bucharest-Magurele, Romania.

出版信息

Discoveries (Craiova). 2014 Mar 29;2(1):e13. doi: 10.15190/d.2014.5.

Abstract

In all jawed vertebrates RAG (recombination activating gene) recombinase orchestrates V(D)J recombination in B and T lymphocyte precursors, assembling the V, D and J germline gene segments into continuous functional entities which encode the variable regions of their immune receptors. V(D)J recombination is the process by which most of the diversity of our specific immune receptors is acquired and is thought to have originated by domestication of a transposon in the genome of a vertebrate.  RAG acts similarly to the cut and paste transposases, by first binding two recombination signal DNA sequences (RSSs), which flank the two coding genes to be adjoined, in a process called synaptic or paired complex (PC) formation. At these RSS-coding borders, RAG first nicks one DNA strand, then creates hairpins, thus cleaving the duplex DNA at both RSSs. Although RAG reaction mechanism resembles that of insect mobile element transposases and RAG itself can inefficiently perform intramolecular and intermolecular integration into the target DNA, inside the nuclei of the developing lymphocytes transposition is extremely rare and is kept under proper surveillance. Our review may help understand how RAG synaptic complex organization prevents deleterious transposition. The phosphoryl transfer reaction mechanism of RNAseH-like fold DDE motif enzymes, including RAG, is discussed accentuating the peculiarities described for various transposases from the light of their available high resolution structures (Tn5, Mu, Mos1 and Hermes). Contrasting the structural 3D organization of DNA in these transpososomes with that of the RSSs-DNA in RAG PC allows us to propose several clues for how evolutionarily RAG may have become "specialized" in recombination versus transposition.

摘要

在所有有颌脊椎动物中,RAG(重组激活基因)重组酶在B和T淋巴细胞前体中协调V(D)J重组,将V、D和J种系基因片段组装成连续的功能实体,这些实体编码其免疫受体的可变区。V(D)J重组是我们获得大多数特异性免疫受体多样性的过程,被认为起源于脊椎动物基因组中一个转座子的驯化。RAG的作用类似于剪切粘贴转座酶,首先结合两个重组信号DNA序列(RSSs),这两个序列位于要连接的两个编码基因两侧,这个过程称为突触或配对复合体(PC)形成。在这些RSS-编码边界处,RAG首先切割一条DNA链,然后形成发夹结构,从而在两个RSSs处切割双链DNA。尽管RAG反应机制类似于昆虫移动元件转座酶,并且RAG本身可以低效地进行分子内和分子间整合到靶DNA中,但在发育中的淋巴细胞细胞核内,转座极其罕见,并受到适当的监测。我们的综述可能有助于理解RAG突触复合体的组织如何防止有害转座。讨论了包括RAG在内的RNAseH样折叠DDE基序酶的磷酸转移反应机制,根据其可用的高分辨率结构(Tn5、Mu、Mos1和Hermes)强调了各种转座酶的特点。将这些转座体中DNA的结构三维组织与RAG PC中RSSs-DNA的结构三维组织进行对比,使我们能够提出一些线索,说明RAG在进化过程中如何在重组与转座方面变得“专业化”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c801/6941560/be334a3f16c0/discoveries-02-013-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验