Suppr超能文献

药物重新定位:根据证据水平分类的计算方法和研究实例

Drug repositioning: computational approaches and research examples classified according to the evidence level.

作者信息

Vogrinc David, Kunej Tanja

机构信息

Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Slovenia.

出版信息

Discoveries (Craiova). 2017 Jun 30;5(2):e75. doi: 10.15190/d.2017.5.

Abstract

Increasing need for novel drugs and their application for treating diseases are the main reasons for the development of bioinformatics platforms for drug repositioning. The use of existing approved drugs for treating other diseases reduces cost and time needed for a drug to come to clinical use. Different strategies for drug repositioning have been reported. The use of several omics types is becoming increasingly important in drug repositioning. Although there are several public databases intended for drug repositioning, not many successful cases of novel use of drugs have been reported in the literature and transferred to clinical use. Additionally, the study approaches in published literature are very heterogeneous. A classification scheme - Drug Repositioning Evidence Level (DREL) - for drug repositioning projects, according to the level of scientific evidence has been proposed previously. In the present study, we have reviewed main databases and bioinformatics approaches enabling drug repositioning studies. We also reviewed six published studies and evaluated them according to the DREL classification. The evaluated cases used drug repositioning approach for therapy of rheumatoid arthritis, cancer, coronary artery disease, diabetes, and gulf war illness. The drug repositioning study field could benefit from clearer definition in published articles therefore including drug repositioning DREL classification scheme could be included in published original and review studies. Novel bioinformatics approaches to improve prediction of drug-target interactions, continuous updating of the databases, and development of novel validation techniques are needed to facilitate the development of the drug repositioning field. Although there are still many challenges in drug repositioning and personalized medicine, stratification of patients based on their molecular signatures and testing of signature-targeting drugs should improve drug efficacy in clinical trials.

摘要

对新型药物的需求不断增加及其在疾病治疗中的应用是开发用于药物重新定位的生物信息学平台的主要原因。使用现有的已批准药物治疗其他疾病可降低药物进入临床使用所需的成本和时间。已经报道了不同的药物重新定位策略。在药物重新定位中,使用多种组学类型变得越来越重要。尽管有几个用于药物重新定位的公共数据库,但文献中报道并转化为临床应用的药物新用途成功案例并不多。此外,已发表文献中的研究方法非常多样化。先前已经提出了一种根据科学证据水平对药物重新定位项目进行分类的方案——药物重新定位证据水平(DREL)。在本研究中,我们回顾了支持药物重新定位研究的主要数据库和生物信息学方法。我们还回顾了六项已发表的研究,并根据DREL分类对它们进行了评估。评估的案例使用药物重新定位方法治疗类风湿性关节炎、癌症、冠状动脉疾病、糖尿病和海湾战争病。药物重新定位研究领域可能会从已发表文章中更清晰的定义中受益,因此已发表的原创研究和综述研究中可纳入药物重新定位DREL分类方案。需要新的生物信息学方法来改进药物-靶点相互作用的预测、数据库的持续更新以及新验证技术的开发,以促进药物重新定位领域的发展。尽管药物重新定位和个性化医疗仍然存在许多挑战,但根据患者的分子特征对患者进行分层并测试针对特征靶点的药物应能提高临床试验中的药物疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e889/6941545/31d1146433f9/discoveries-05-075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验