Suppr超能文献

一锅法合成硫属锡化物-还原氧化石墨烯-碳纳米管纳米复合材料作为锂离子电池负极材料

One-pot synthesis of tin chalcogenide-reduced graphene oxide-carbon nanotube nanocomposite as anode material for lithium-ion batteries.

作者信息

Abbasnezhad Azam, Asgharzadeh Hamed, Ansari Hamedani Ali, Hayat Soytas Serap

机构信息

Nanostructured and Novel Materials Laboratory (NNML), Department of Materials Engineering, University of Tabriz, Tabriz 51666-16471, Iran.

出版信息

Dalton Trans. 2020 May 14;49(18):5890-5897. doi: 10.1039/d0dt00857e. Epub 2020 Apr 20.

Abstract

In this study, a ternary tin chalcogenide (TC)-reduced graphene oxide (RGO)-carbon nanotube (CNT) nanocomposite was synthesized as a lithium-ion battery (LIB) anode by a simple one-step protocol. The nanocomposite was prepared through a hydrothermal method using tin chloride as the tin precursor, thiourea as the sulfur source and reducing agent, and GO-CNT hybrid as the carbonaceous nanostructure. The structure, morphology, and phase analysis of the synthesized nanocomposite powder were investigated using Raman spectroscopy, field-emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). The results show that GO is reduced while SnS and SnS nanosheets along with SnO nanoparticles are simultaneously formed within the RGO-CNT hybrid framework throughout the hydrothermal process. During the first lithiation-delithiation process, the discharge capacity and the columbic efficiency for the ternary TC-RGO-CNT nanocomposite electrode at a current density of 50 mA g are 1401 mA h g and 50%, respectively. The TC-RGO-CNT electrode gives an improved capacity of 197 mA h g at 500 mA g while the corresponding value for the bare TC, and binary TC-CNT and TC-RGO nanocomposite electrodes was only 5, 18, and 41 mA h g, respectively. Meanwhile, the ternary nanocomposite anode indicates outstanding stability after 150 cycles with a reversible capacity of 100 mA h g at 500 mA g. The excellent electrochemical performance of the ternary TC-RGO-CNT nanocomposite is ascribed to the synergistic effect of the high capacity of electrochemically-active TC nanostructures along with the large surface area, porous structure, and exceptional conductivity of the 3D RGO-CNT framework.

摘要

在本研究中,通过简单的一步法合成了一种三元硫属锡化物(TC)-还原氧化石墨烯(RGO)-碳纳米管(CNT)纳米复合材料作为锂离子电池(LIB)负极。该纳米复合材料采用水热法制备,以氯化锡作为锡前驱体,硫脲作为硫源和还原剂,以氧化石墨烯-碳纳米管杂化物作为碳质纳米结构。利用拉曼光谱、场发射扫描电子显微镜(FESEM)和X射线衍射(XRD)对合成的纳米复合粉末的结构、形貌和相进行了分析。结果表明,在整个水热过程中,氧化石墨烯被还原,同时在还原氧化石墨烯-碳纳米管杂化框架内同时形成了硫化锡和硫化亚锡纳米片以及氧化锡纳米颗粒。在首次锂化-脱锂过程中,三元TC-RGO-CNT纳米复合电极在电流密度为50 mA g时的放电容量和库仑效率分别为1401 mA h g和50%。TC-RGO-CNT电极在500 mA g时的容量提高到197 mA h g,而裸TC、二元TC-CNT和TC-RGO纳米复合电极的相应值分别仅为5、18和41 mA h g。同时,三元纳米复合负极在150次循环后表现出出色的稳定性,在500 mA g时的可逆容量为100 mA h g。三元TC-RGO-CNT纳米复合材料优异的电化学性能归因于电化学活性TC纳米结构的高容量与三维还原氧化石墨烯-碳纳米管框架的大表面积、多孔结构和优异导电性的协同效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验