Suppr超能文献

开发一种非人灵长类动物脑有限元模型以研究头部旋转引起的脑损伤阈值。

Development of a Subhuman Primate Brain Finite Element Model to Investigate Brain Injury Thresholds Induced by Head Rotation.

作者信息

Arora Tushar, Zhang Liying, Prasad Priya

机构信息

Wayne State University, Detroit, MI, USA.

Prasad Engineering, LLC, Plymouth, MI, USA.

出版信息

Stapp Car Crash J. 2019 Nov;63:65-82. doi: 10.4271/2019-22-0003.

Abstract

An anatomically detailed rhesus monkey brain FE model was developed to simulate in vivo responses of the brain of sub-human primates subjected to rotational accelerations resulting in diffuse axonal injury (DAI). The material properties used in the monkey model are those in the GHBMC 50th percentile male head model (Global Human Body Model Consortium). The angular loading simulations consisted of coronal, oblique and sagittal plane rotations with the center of rotation in neck to duplicate experimental conditions. Maximum principal strain (MPS) and Cumulative strain damage measure (CSDM) were analyzed for various white matter structures such as the cerebrum subcortical white matter, corpus callosum and brainstem. The MPS in coronal rotation were 45% to 54% higher in the brainstem, 8% to 48% higher in the corpus callosum, 13% to 22% higher in the white matter when compared to those in oblique and sagittal rotations, suggesting that more severe DAI was expected from coronal and oblique rotations as compared to that from sagittal rotation. The level 1+ DAI was associated with 1.3 to 1.42 MPS and 50% CSDM (0.5) responses in the brainstem, corpus callosum and cerebral white matter. The mass scaling method, sometimes referred to as Holbourn's inverse 2/3 power law, used for development of human brain injury criterion was evaluated to understand the effect of geometrical and anatomical differences between human and animal head. Based on simulations conducted with the animal and human models in three different planes - sagittal, coronal and horizontal - the scaling from animal to human models are not supported due to lack of geometrical similitude between the animal and human brains. Thus, the scaling method used in the development of brain injury criterion for rotational acceleration/velocity is unreliable.

摘要

开发了一个具有详细解剖结构的恒河猴脑有限元模型,以模拟非人灵长类动物大脑在受到导致弥漫性轴索损伤(DAI)的旋转加速度时的体内反应。猴模型中使用的材料属性与GHBMC第50百分位男性头部模型(全球人体模型联盟)中的相同。角载荷模拟包括冠状面、斜平面和矢状面旋转,旋转中心在颈部,以复制实验条件。对各种白质结构,如大脑皮质下白质、胼胝体和脑干,分析了最大主应变(MPS)和累积应变损伤量(CSDM)。与斜平面和矢状面旋转相比,冠状面旋转时脑干中的MPS高45%至54%,胼胝体中高8%至48%,白质中高13%至22%,这表明与矢状面旋转相比,冠状面和斜平面旋转预期会导致更严重的DAI。1+级DAI与脑干、胼胝体和脑白质中1.3至1.42的MPS以及50%的CSDM(0.5)反应相关。评估了用于制定人脑损伤标准的质量缩放方法,有时称为霍尔本逆2/3幂律,以了解人与动物头部几何和解剖差异的影响。基于在矢状面、冠状面和水平面三个不同平面上对动物和人体模型进行的模拟,由于动物和人类大脑之间缺乏几何相似性,不支持从动物模型到人体模型的缩放。因此,用于旋转加速度/速度脑损伤标准制定的缩放方法不可靠。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验