Suppr超能文献

血浆微小RNA研究中的统计学问题与分组分类及其数据应用

Statistical Issues and Group Classification in Plasma MicroRNA Studies With Data Application.

作者信息

Rai Shesh N, Qian Chen, Pan Jianmin, McClain Marion, Eichenberger Maurice R, McClain Craig J, Galandiuk Susan

机构信息

Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.

Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY, USA.

出版信息

Evol Bioinform Online. 2020 Apr 14;16:1176934320913338. doi: 10.1177/1176934320913338. eCollection 2020.

Abstract

The analysis of plasma microRNAs (miRNAs) has been widely used as a method for finding potential biomarkers for human diseases, especially those with a link to cancer. Methods of analyzing plasma miRNA have been thoroughly discussed from sample extraction to data modeling. However, some issues exist within the process that have rarely been talked about. Rice et al. discussed some issues in plasma miRNA studies, such as the lack of standard methodology including the use of different cycle threshold, time to plasma extraction, among others. These issues can lead to inconsistent data, and thus impact the result and assay reproducibility. Other external issues, such as batch effect and operator effect, may also indirectly impact the statistical analysis. Here, we discuss issues in plasma miRNA studies from a statistical point of view. The interaction effect of different ways of calculating fold-change, the choice of housekeeping genes, and methods of normalization are among the issues we discuss, with data demonstrations. values are calculated and compared to determine the effect of those issues on statistical conclusions. Statistical methods such as analysis of variance and analysis of covariance are crucial in the analysis of miRNA but investigators are often confused about them; therefore, a brief explanation of these statistical methods is also included. In addition, 3-group classification is discussed, as it is often challenging, compared with 2-group classification.

摘要

血浆微小RNA(miRNA)分析已被广泛用作寻找人类疾病潜在生物标志物的方法,尤其是那些与癌症相关的疾病。从样本提取到数据建模,血浆miRNA的分析方法已得到充分讨论。然而,在这个过程中存在一些很少被提及的问题。赖斯等人讨论了血浆miRNA研究中的一些问题,比如缺乏标准方法,包括使用不同的循环阈值、血浆提取时间等。这些问题可能导致数据不一致,从而影响结果和检测的可重复性。其他外部问题,如批次效应和操作者效应,也可能间接影响统计分析。在这里,我们从统计学角度讨论血浆miRNA研究中的问题。我们讨论的问题包括不同计算倍数变化方式的相互作用效应、管家基因的选择和标准化方法,并进行数据展示。计算并比较 值以确定这些问题对统计结论的影响。方差分析和协方差分析等统计方法在miRNA分析中至关重要,但研究人员常常对此感到困惑;因此,还包括对这些统计方法的简要解释。此外,还讨论了三组分类,因为与两组分类相比,它通常具有挑战性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53a7/7157974/50fb94000aef/10.1177_1176934320913338-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验