Suppr超能文献

假设充分性平均作为一种概念,用于开发更稳健的差异基因表达分析方法。

Assumption Adequacy Averaging as a Concept to Develop More Robust Methods for Differential Gene Expression Analysis.

作者信息

Pounds Stan, Rai Shesh N

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN, 38105, USA.

出版信息

Comput Stat Data Anal. 2009 Mar 15;53(5):1604-1612. doi: 10.1016/j.csda.2008.05.010.

Abstract

The concept of assumption adequacy averaging is introduced as a technique to develop more robust methods that incorporate assessments of assumption adequacy into the analysis. The concept is illustrated by using it to develop a method that averages results from the t-test and nonparametric rank-sum test with weights obtained from using the Shapiro-Wilk test to test the assumption of normality. Through this averaging process, the proposed method is able to rely more heavily on the statistical test that the data suggests is superior for each individual gene. Subsequently, this method developed by assumption adequacy averaging outperforms its two component methods (the t-test and rank-sum test) in a series of traditional and bootstrap-based simulation studies. The proposed method showed greater concordance in gene selection across two studies of gene expression in acute myeloid leukemia than did the t-test or rank-sum test. An R routine to implement the method is available upon request.

摘要

引入了假设充分性平均的概念,作为一种开发更稳健方法的技术,该方法将假设充分性评估纳入分析中。通过使用夏皮罗-威尔克检验来检验正态性假设所获得的权重,对t检验和非参数秩和检验的结果进行平均,以此来说明这一概念。通过这种平均过程,所提出的方法能够更依赖于数据表明对每个个体基因更优的统计检验。随后,在一系列传统的和基于自助法的模拟研究中,通过假设充分性平均开发的这种方法优于其两个组成方法(t检验和秩和检验)。在两项急性髓系白血病基因表达研究中,所提出的方法在基因选择上比t检验或秩和检验表现出更高的一致性。如有需要,可提供实现该方法的R程序。

相似文献

1
Assumption Adequacy Averaging as a Concept to Develop More Robust Methods for Differential Gene Expression Analysis.
Comput Stat Data Anal. 2009 Mar 15;53(5):1604-1612. doi: 10.1016/j.csda.2008.05.010.
2
Omnibus test for normality based on the Edgeworth expansion.
PLoS One. 2020 Jun 11;15(6):e0233901. doi: 10.1371/journal.pone.0233901. eCollection 2020.
3
A new efficient statistical test for detecting variability in the gene expression data.
Stat Methods Med Res. 2008 Aug;17(4):405-19. doi: 10.1177/0962280206078643. Epub 2007 Aug 14.
4
To test or not to test: Preliminary assessment of normality when comparing two independent samples.
BMC Med Res Methodol. 2012 Jun 19;12:81. doi: 10.1186/1471-2288-12-81.
5
Nonparametric methods for microarray data based on exchangeability and borrowed power.
J Biopharm Stat. 2005;15(5):783-97. doi: 10.1081/BIP-200067778.
6
A doubly robust estimator for the Mann Whitney Wilcoxon rank sum test when applied for causal inference in observational studies.
J Appl Stat. 2024 May 15;51(16):3267-3291. doi: 10.1080/02664763.2024.2346357. eCollection 2024.
8
Testing for normality in regression models: mistakes abound (but may not matter).
R Soc Open Sci. 2025 Apr 30;12(4):241904. doi: 10.1098/rsos.241904. eCollection 2025 Apr.
10
Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.
Stat Med. 2017 Jun 30;36(14):2187-2205. doi: 10.1002/sim.7263. Epub 2017 Mar 9.

引用本文的文献

1
Statistical Issues and Group Classification in Plasma MicroRNA Studies With Data Application.
Evol Bioinform Online. 2020 Apr 14;16:1176934320913338. doi: 10.1177/1176934320913338. eCollection 2020.
4
Empirical evaluation of consistency and accuracy of methods to detect differentially expressed genes based on microarray data.
Comput Biol Med. 2014 Mar;46:1-10. doi: 10.1016/j.compbiomed.2013.12.002. Epub 2013 Dec 13.
5
The most informative spacing test effectively discovers biologically relevant outliers or multiple modes in expression.
Bioinformatics. 2014 May 15;30(10):1400-8. doi: 10.1093/bioinformatics/btu039. Epub 2014 Jan 22.

本文引用的文献

1
False discovery rate paradigms for statistical analyses of microarray gene expression data.
Bioinformation. 2007 Apr 10;1(10):436-46. doi: 10.6026/97320630001436.
2
Estimation and control of multiple testing error rates for microarray studies.
Brief Bioinform. 2006 Mar;7(1):25-36. doi: 10.1093/bib/bbk002.
3
Statistical significance threshold criteria for analysis of microarray gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article36. doi: 10.2202/1544-6115.1064. Epub 2004 Dec 19.
4
Microarray data analysis: from disarray to consolidation and consensus.
Nat Rev Genet. 2006 Jan;7(1):55-65. doi: 10.1038/nrg1749.
5
Sample size determination for the false discovery rate.
Bioinformatics. 2005 Dec 1;21(23):4263-71. doi: 10.1093/bioinformatics/bti699. Epub 2005 Oct 4.
6
A multiple testing procedure to associate gene expression levels with survival.
Stat Med. 2005 Oct 30;24(20):3077-88. doi: 10.1002/sim.2179.
7
Improved statistical tests for differential gene expression by shrinking variance components estimates.
Biostatistics. 2005 Jan;6(1):59-75. doi: 10.1093/biostatistics/kxh018.
8
Gene expression profiling of pediatric acute myelogenous leukemia.
Blood. 2004 Dec 1;104(12):3679-87. doi: 10.1182/blood-2004-03-1154. Epub 2004 Jun 29.
9
A mixture model for estimating the local false discovery rate in DNA microarray analysis.
Bioinformatics. 2004 Nov 1;20(16):2694-701. doi: 10.1093/bioinformatics/bth310. Epub 2004 May 14.
10
Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia.
N Engl J Med. 2004 Apr 15;350(16):1605-16. doi: 10.1056/NEJMoa031046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验