Suppr超能文献

自动化一种用于考虑成像质谱数据中空间信息的过程卷积方法。

Automating a Process Convolution Approach to Account for Spatial Information in Imaging Mass Spectrometry Data.

作者信息

Miller Cameron, Lawson Andrew, Chung Dongjun, Gebregziabher Mulugeta, Yeh Elizabeth, Drake Richard, Hill Elizabeth

机构信息

Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC.

Department of Biomedical Informatics, The Ohio State University, Columbus, OH.

出版信息

Spat Stat. 2020 Apr;36. doi: 10.1016/j.spasta.2020.100422. Epub 2020 Feb 19.

Abstract

In the age of big data, imaging techniques such as imaging mass spectrometry (IMS) stand out due to the combination of data size and spatial referencing. However, the data analytic tools readily accessible to investigators often ignore the spatial information or provide results with vague interpretations. We focus on imaging techniques like IMS that collect data along a regular grid and develop methods to automate the process of modeling spatially-referenced imaging data using a process convolution (PC) approach. The PC approach provides a flexible framework to model spatially-referenced geostatistical data, but to make it computationally efficient requires identification of model parameters. We perform simulation studies to define optimal methods for specifying PC parameters and then test those methods using simulations that spike in real spatial information. In doing so, we demonstrate that our methods concurrently account for the spatial information and provide clear interpretations of covariate effects, while maximizing power and maintaining type I error rates near the nominal level. To make these methods accessible, we detail the imagingPC R package. Our approach provides a framework that is flexible and scalable to the level required by many imaging techniques.

摘要

在大数据时代,成像质谱(IMS)等成像技术因数据规模与空间参照的结合而脱颖而出。然而,研究人员能够轻易获取的数据分析工具往往会忽略空间信息,或者给出解释模糊的结果。我们专注于像IMS这样沿规则网格收集数据的成像技术,并开发方法,利用过程卷积(PC)方法自动对空间参照成像数据进行建模。PC方法为空间参照地统计数据建模提供了一个灵活的框架,但要使其计算高效,需要识别模型参数。我们进行模拟研究来定义指定PC参数的最优方法,然后使用融入真实空间信息的模拟来测试这些方法。通过这样做,我们证明了我们的方法同时考虑了空间信息,并对协变量效应给出清晰的解释,同时在保持I型错误率接近标称水平的情况下最大化功效。为了让这些方法易于使用,我们详细介绍了imagingPC R包。我们的方法提供了一个灵活且可扩展的框架,能满足许多成像技术所需的水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ada/7172386/39555a79650a/nihms-1568785-f0004.jpg

相似文献

引用本文的文献

本文引用的文献

3
Glycosylation in cancer: mechanisms and clinical implications.癌症中的糖基化:机制与临床意义。
Nat Rev Cancer. 2015 Sep;15(9):540-55. doi: 10.1038/nrc3982. Epub 2015 Aug 20.
6
Cell surface protein glycosylation in cancer.癌症中的细胞表面蛋白糖基化
Proteomics. 2014 Mar;14(4-5):525-46. doi: 10.1002/pmic.201300387.
8
High-mannose glycans are elevated during breast cancer progression.高甘露糖型聚糖在乳腺癌进展过程中升高。
Mol Cell Proteomics. 2011 Jan;10(1):M110.002717. doi: 10.1074/mcp.M110.002717. Epub 2010 Nov 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验