Miller Cameron, Lawson Andrew, Chung Dongjun, Gebregziabher Mulugeta, Yeh Elizabeth, Drake Richard, Hill Elizabeth
Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC.
Department of Biomedical Informatics, The Ohio State University, Columbus, OH.
Spat Stat. 2020 Apr;36. doi: 10.1016/j.spasta.2020.100422. Epub 2020 Feb 19.
In the age of big data, imaging techniques such as imaging mass spectrometry (IMS) stand out due to the combination of data size and spatial referencing. However, the data analytic tools readily accessible to investigators often ignore the spatial information or provide results with vague interpretations. We focus on imaging techniques like IMS that collect data along a regular grid and develop methods to automate the process of modeling spatially-referenced imaging data using a process convolution (PC) approach. The PC approach provides a flexible framework to model spatially-referenced geostatistical data, but to make it computationally efficient requires identification of model parameters. We perform simulation studies to define optimal methods for specifying PC parameters and then test those methods using simulations that spike in real spatial information. In doing so, we demonstrate that our methods concurrently account for the spatial information and provide clear interpretations of covariate effects, while maximizing power and maintaining type I error rates near the nominal level. To make these methods accessible, we detail the imagingPC R package. Our approach provides a framework that is flexible and scalable to the level required by many imaging techniques.
在大数据时代,成像质谱(IMS)等成像技术因数据规模与空间参照的结合而脱颖而出。然而,研究人员能够轻易获取的数据分析工具往往会忽略空间信息,或者给出解释模糊的结果。我们专注于像IMS这样沿规则网格收集数据的成像技术,并开发方法,利用过程卷积(PC)方法自动对空间参照成像数据进行建模。PC方法为空间参照地统计数据建模提供了一个灵活的框架,但要使其计算高效,需要识别模型参数。我们进行模拟研究来定义指定PC参数的最优方法,然后使用融入真实空间信息的模拟来测试这些方法。通过这样做,我们证明了我们的方法同时考虑了空间信息,并对协变量效应给出清晰的解释,同时在保持I型错误率接近标称水平的情况下最大化功效。为了让这些方法易于使用,我们详细介绍了imagingPC R包。我们的方法提供了一个灵活且可扩展的框架,能满足许多成像技术所需的水平。