Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckst. 1, 55131, Mainz, Germany.
Empolis Information Management GmbH, Kaiserslautern, Germany.
J Digit Imaging. 2020 Aug;33(4):1026-1033. doi: 10.1007/s10278-020-00342-0.
Structured reporting is a favorable and sustainable form of reporting in radiology. Among its advantages are better presentation, clearer nomenclature, and higher quality. By using MRRT-compliant templates, the content of the categorized items (e.g., select fields) can be automatically stored in a database, which allows further research and quality analytics based on established ontologies like RadLex® linked to the items. Additionally, it is relevant to provide free-text input for descriptions of findings and impressions in complex imaging studies or for the information included with the clinical referral. So far, however, this unstructured content cannot be categorized. We developed a solution to analyze and code these free-text parts of the templates in our MRRT-compliant reporting platform, using natural language processing (NLP) with RadLex® terms in addition to the already categorized items. The established hybrid reporting concept is working successfully. The NLP tool provides RadLex® codes with modifiers (affirmed, speculated, negated). Radiologists can confirm or reject codes provided by NLP before finalizing the structured report. Furthermore, users can suggest RadLex® codes from free text that is not correctly coded with NLP or can suggest to change the modifier. Analyzing free-text fields took 1.23 s on average. Hybrid reporting enables coding of free-text information in our MRRT-compliant templates and thus increases the amount of categorized data that can be stored in the database. This enhances the possibilities for further analyses, such as correlating clinical information with radiological findings or storing high-quality structured information for machine-learning approaches.
结构化报告是放射学中一种有利且可持续的报告形式。其优点包括更好的呈现、更清晰的命名法和更高的质量。通过使用符合 MRRT 的模板,可以将分类项目(例如,选择字段)的内容自动存储在数据库中,这允许基于像与项目相关联的 RadLex® 这样的已建立本体进行进一步的研究和质量分析。此外,为复杂成像研究中的发现和印象描述或与临床转诊相关的信息提供自由文本输入是很重要的。然而,到目前为止,这些非结构化内容无法进行分类。我们开发了一种解决方案,使用自然语言处理 (NLP) 结合 RadLex® 术语来分析和编码我们符合 MRRT 的报告平台中的这些模板的自由文本部分,除了已经分类的项目之外。已经建立的混合报告概念正在成功运行。NLP 工具提供带有修饰符(确认、推测、否定)的 RadLex® 代码。放射科医生可以在最终确定结构化报告之前确认或拒绝 NLP 提供的代码。此外,用户可以从未被 NLP 正确编码的自由文本中建议 RadLex® 代码,或者建议修改修饰符。分析自由文本字段的平均时间为 1.23 秒。混合报告能够对我们符合 MRRT 的模板中的自由文本信息进行编码,从而增加了可以存储在数据库中的分类数据量。这增强了进一步分析的可能性,例如将临床信息与放射学发现相关联,或为机器学习方法存储高质量的结构化信息。