Suppr超能文献

番茄红素环化酶蛋白丰度降低导致驯化西瓜出现红色果肉。

Decreased Protein Abundance of Lycopene -Cyclase Contributes to Red Flesh in Domesticated Watermelon.

机构信息

National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China.

National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China

出版信息

Plant Physiol. 2020 Jul;183(3):1171-1183. doi: 10.1104/pp.19.01409. Epub 2020 Apr 22.

Abstract

Red-fleshed watermelons () that accumulate lycopene in their flesh cells have been selected and domesticated from their pale-fleshed ancestors. However, the molecular basis of this trait remains poorly understood. Using map-based cloning and transgenic analysis, we identified a lycopene β-cyclase () gene that controls the flesh color of watermelon. Down-regulation of caused the flesh color to change from pale yellow to red, and overexpression in the red-fleshed line caused the flesh color to change to orange. Analysis of single-nucleotide polymorphisms using 211 watermelon accessions with different flesh colors revealed that two missense mutations between three haplotypes ( , , and ) were selected and largely fixed in domesticated watermelon. Proteins derived from these three haplotypes were localized in plastids to catalyze the conversion of lycopene to β-carotene and showed similar catalytic abilities. We revealed that ClLCYB protein abundance, instead of transcript level, was negatively correlated with lycopene accumulation. Different amounts of ClLCYB protein degradation among the haplotypes were found in ClLCYB transgenic Arabidopsis () lines. After treatment with the proteasome inhibitor MG132, the concentration of ClLCYB increased noticeably compared with other ClLCYB proteins. These results indicate that natural missense mutations within influence ClLCYB protein abundance and have contributed to the development of red flesh color in domesticated watermelon.

摘要

从果肉细胞中积累番茄红素的红肉西瓜被选育和驯化而来。然而,这一特征的分子基础仍知之甚少。通过基于图谱的克隆和转基因分析,我们鉴定了一个控制西瓜果肉颜色的番茄红素 β-环化酶()基因。下调导致果肉颜色从浅黄色变为红色,而在红肉系中过表达则导致果肉颜色变为橙色。对 211 个具有不同果肉颜色的西瓜品种进行单核苷酸多态性分析表明,三个单倍型(、和)之间的两个错义突变被选择并在驯化西瓜中大量固定。这三个单倍型衍生的蛋白定位于质体中,催化番茄红素转化为 β-胡萝卜素,表现出相似的催化能力。我们揭示了 ClLCYB 蛋白丰度而非转录水平与番茄红素积累呈负相关。在 ClLCYB 转基因拟南芥()系中发现三个单倍型的 ClLCYB 蛋白降解量不同。用蛋白酶体抑制剂 MG132 处理后,ClLCYB 的浓度与其他 ClLCYB 蛋白相比明显增加。这些结果表明,ClLCYB 内的天然错义突变影响 ClLCYB 蛋白丰度,并导致驯化西瓜红色果肉的形成。

相似文献

1
Decreased Protein Abundance of Lycopene -Cyclase Contributes to Red Flesh in Domesticated Watermelon.
Plant Physiol. 2020 Jul;183(3):1171-1183. doi: 10.1104/pp.19.01409. Epub 2020 Apr 22.
3
Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).
BMC Plant Biol. 2021 Apr 28;21(1):203. doi: 10.1186/s12870-021-02965-z.
4
Whole genome resequencing of watermelons to identify single nucleotide polymorphisms related to flesh color and lycopene content.
PLoS One. 2019 Oct 9;14(10):e0223441. doi: 10.1371/journal.pone.0223441. eCollection 2019.
7
Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.).
Theor Appl Genet. 2022 Jan;135(1):185-200. doi: 10.1007/s00122-021-03958-0. Epub 2021 Oct 11.
8
Identification of a novel locus controlling canary yellow flesh color in watermelons.
Front Genet. 2023 Sep 19;14:1256627. doi: 10.3389/fgene.2023.1256627. eCollection 2023.
10
Identification of chromosome region and candidate genes for canary-yellow flesh (Cyf) locus in watermelon (Citrullus lanatus).
Plant Sci. 2023 Apr;329:111594. doi: 10.1016/j.plantsci.2023.111594. Epub 2023 Jan 13.

引用本文的文献

1
Cloning and functional analysis of transcription factor on carotenoid accumulation in spathe of .
Plant Signal Behav. 2025 Dec;20(1):2527961. doi: 10.1080/15592324.2025.2527961. Epub 2025 Jul 7.
3
Boosting Antioxidant Quality in Cucumber Beverages with Encapsulated Tomato Carotenoids.
Antioxidants (Basel). 2025 Mar 18;14(3):354. doi: 10.3390/antiox14030354.
4
Fresh-cut watermelon: postharvest physiology, technology, and opportunities for quality improvement.
Front Genet. 2025 Feb 3;16:1523240. doi: 10.3389/fgene.2025.1523240. eCollection 2025.
5
A point mutation in the zinc-finger transcription factor controls the green flesh color in chieh-qua ( Cogn. var. How).
Front Plant Sci. 2024 Oct 21;15:1388115. doi: 10.3389/fpls.2024.1388115. eCollection 2024.
6
Genetic mapping and molecular marker development for white flesh color in tomato.
Front Plant Sci. 2024 Sep 3;15:1459013. doi: 10.3389/fpls.2024.1459013. eCollection 2024.
7
Gene structure and potential regulation of the lycopene cyclase genes in L.
Physiol Mol Biol Plants. 2023 Oct;29(10):1423-1435. doi: 10.1007/s12298-023-01384-8. Epub 2023 Nov 13.
8
Identification of a novel locus controlling canary yellow flesh color in watermelons.
Front Genet. 2023 Sep 19;14:1256627. doi: 10.3389/fgene.2023.1256627. eCollection 2023.
9
Plant carotenoids: recent advances and future perspectives.
Mol Hortic. 2022 Jan 21;2(1):3. doi: 10.1186/s43897-022-00023-2.
10
Developing a highly efficient CGBE base editor in watermelon.
Hortic Res. 2023 Jul 23;10(9):uhad155. doi: 10.1093/hr/uhad155. eCollection 2023 Sep.

本文引用的文献

1
Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits.
Nat Genet. 2019 Nov;51(11):1616-1623. doi: 10.1038/s41588-019-0518-4. Epub 2019 Nov 1.
3
Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage.
Nature. 2017 Nov 23;551(7681):464-471. doi: 10.1038/nature24644. Epub 2017 Oct 25.
4
Carotenoid Metabolism in Plants: The Role of Plastids.
Mol Plant. 2018 Jan 8;11(1):58-74. doi: 10.1016/j.molp.2017.09.010. Epub 2017 Sep 25.
5
Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis.
Prostate Cancer Prostatic Dis. 2017 Dec;20(4):361-377. doi: 10.1038/pcan.2017.25. Epub 2017 Apr 25.
6
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.
Nat Biotechnol. 2017 May;35(5):441-443. doi: 10.1038/nbt.3833. Epub 2017 Mar 27.
8
Efficient CRISPR/Cas9-based gene knockout in watermelon.
Plant Cell Rep. 2017 Mar;36(3):399-406. doi: 10.1007/s00299-016-2089-5. Epub 2016 Dec 19.
10
Carotenoids: biochemistry, pharmacology and treatment.
Br J Pharmacol. 2017 Jun;174(11):1290-1324. doi: 10.1111/bph.13625. Epub 2016 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验