Suppr超能文献

基于功率谱特征的毫米波雷达小异物碎片检测

Small Foreign Object Debris Detection for Millimeter-Wave Radar Based on Power Spectrum Features.

作者信息

Ni Peishuang, Miao Chen, Tang Hui, Jiang Mengjie, Wu Wen

机构信息

Ministerial Key Laboratory of JGMT, Nanjing University of Science and Technology, Xiao Ling Wei200#, Nanjing 210094, China.

出版信息

Sensors (Basel). 2020 Apr 18;20(8):2316. doi: 10.3390/s20082316.

Abstract

Foreign object debris (FOD) detection can be considered a kind of classification that distinguishes the measured signal as either containing FOD targets or only corresponding to ground clutter. In this paper, we propose a support vector domain description (SVDD) classifier with the particle swarm optimization (PSO) algorithm for FOD detection. The echo features of FOD and ground clutter received by the millimeter-wave radar are first extracted in the power spectrum domain as input eigenvectors of the classifier, followed with the parameters optimized by the PSO algorithm, and lastly, a PSO-SVDD classifier is established. However, since only ground clutter samples are utilized to train the SVDD classifier, overfitting inevitably occurs. Thus, a small number of samples with FOD are added in the training stage to further construct a PSO-NSVDD (NSVDD: SVDD with negative examples) classifier to achieve better classification performance. Experimental results based on measured data showed that the proposed methods could not only achieve a good detection performance but also significantly reduce the false alarm rate.

摘要

异物碎片(FOD)检测可被视为一种分类,即将测量信号区分为包含FOD目标或仅对应于地面杂波。在本文中,我们提出了一种结合粒子群优化(PSO)算法的支持向量域描述(SVDD)分类器用于FOD检测。首先在功率谱域中提取毫米波雷达接收到的FOD和地面杂波的回波特征,作为分类器的输入特征向量,接着通过PSO算法对参数进行优化,最后建立PSO-SVDD分类器。然而,由于仅利用地面杂波样本训练SVDD分类器,不可避免地会出现过拟合。因此,在训练阶段添加少量带有FOD的样本,进一步构建PSO-NSVDD(NSVDD:带有负样本的SVDD)分类器以实现更好的分类性能。基于实测数据的实验结果表明,所提出的方法不仅能够实现良好的检测性能,还能显著降低误报率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/514b/7219243/7886342cb137/sensors-20-02316-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验