Suppr超能文献

一种基于最优变分模态分解(VMD)和支持向量数据描述(SVDD)的毫米波雷达传感器异物检测方法

A FOD Detection Approach on Millimeter-Wave Radar Sensors Based on Optimal VMD and SVDD.

作者信息

Zhong Jun, Gou Xin, Shu Qin, Liu Xing, Zeng Qi

机构信息

School of Electrical Engineering, Sichuan University, Chengdu 610000, China.

出版信息

Sensors (Basel). 2021 Feb 2;21(3):997. doi: 10.3390/s21030997.

Abstract

Foreign object debris (FOD) on airport runways can cause serious accidents and huge economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the advantages of higher range resolution and lower power consumption. However, it is difficult for traditional FOD detection methods to detect and distinguish weak signals of targets from strong ground clutter. To solve this problem, this paper proposes a new FOD detection approach based on optimized variational mode decomposition (VMD) and support vector data description (SVDD). This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the accuracy and stability of the classifier. The results from both the simulation and field case show the excellent FOD detection performance of the proposed VMD-SVDD method.

摘要

机场跑道上的外来物碎片(FOD)会导致严重事故和巨大经济损失。基于毫米波(MMW)雷达传感器的FOD检测系统具有更高的距离分辨率和更低的功耗等优点。然而,传统的FOD检测方法很难从强地面杂波中检测和区分目标的微弱信号。为了解决这个问题,本文提出了一种基于优化变分模态分解(VMD)和支持向量数据描述(SVDD)的新型FOD检测方法。该方法利用SVDD作为分类器来区分FOD信号和杂波信号。更重要的是,采用鲸鱼优化算法(WOA)优化的VMD来提高分类器的准确性和稳定性。仿真和现场案例的结果都表明了所提出的VMD-SVDD方法具有出色的FOD检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd13/7867293/8a74ff880376/sensors-21-00997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验