Xu Ziyang, Wise Megan C, Chokkalingam Neethu, Walker Susanne, Tello-Ruiz Edgar, Elliott Sarah T C, Perales-Puchalt Alfredo, Xiao Peng, Zhu Xizhou, Pumroy Ruth A, Fisher Paul D, Schultheis Katherine, Schade Eric, Menis Sergey, Guzman Stacy, Andersen Hanne, Broderick Kate E, Humeau Laurent M, Muthumani Kar, Moiseenkova-Bell Vera, Schief William R, Weiner David B, Kulp Daniel W
The Vaccine and Immunotherapy Center The Wistar Institute Philadelphia PA 19104 USA.
Department of Pharmacology Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA.
Adv Sci (Weinh). 2020 Feb 27;7(8):1902802. doi: 10.1002/advs.201902802. eCollection 2020 Apr.
Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.
纳米技术被认为在疫苗领域的重要性日益增加。通过在多价纳米颗粒上修饰免疫原,设计的纳米疫苗可以引发更强的体液免疫。然而,纳米疫苗大规模生产中存在的重大实际和资金挑战阻碍了它们广泛的临床转化。在此,展示了一种整合计算蛋白质建模和自适应电穿孔介导的合成DNA递送的替代方法,从而能够在体内直接生产纳米疫苗。已证明DNA启动的纳米颗粒在体内自发自组装展示HIV免疫原。与单体对应物相比,DNA启动的纳米疫苗在小鼠和豚鼠中均诱导更强的体液反应,并且与重组蛋白纳米疫苗相比,独特地引发CD8 +效应T细胞免疫。当设计并评估具有替代支架和修饰抗原的DNA启动的纳米疫苗时,疫苗反应会得到改善。最后,对DL纳米疫苗诱导的功能性免疫反应的评估表明,与对照小鼠或用DNA编码的血凝素单体免疫的小鼠相比,用DNA启动的血凝素纳米颗粒疫苗免疫的小鼠在致命的流感攻击中完全存活,并且病毒载量、体重减轻和流感引起的肺部病理显著降低。对这些下一代体内生产的纳米疫苗的进一步研究可能为针对多种疾病靶点的免疫接种提供优势。
J Biomed Nanotechnol. 2016-6
Acta Biomater. 2020-5
Int J Biol Macromol. 2023-11-1
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023
Curr Treat Options Oncol. 2025-7-17
Front Cell Infect Microbiol. 2025-4-10
Front Immunol. 2025-1-31
bioRxiv. 2024-7-23
Signal Transduct Target Ther. 2024-2-21
N Engl J Med. 2021-9-16
Curr Opin Immunol. 2019-4-28
Nat Immunol. 2019-2-18
Front Immunol. 2019-1-24
Annu Rev Med. 2019-1-27