Staniswalis J G, Cooper V
Department of Biostatistics, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0032.
Biometrics. 1988 Dec;44(4):1103-19.
A nonparametric method for analyzing quantal response data from an indirect bioassay experiment is proposed. Kernel estimates of the dose-response curve are used to develop approximate confidence intervals for (i) the optimal combination dose of a drug with therapeutic effects at low doses and toxic effects at high doses, and (ii) the lethal dose levels of a toxic chemical. This nonparametric procedure was implemented on real and simulated data. The confidence interval for problem (i) has high coverage probabilities when the dose-response curve is symmetric about the optima. However, the coverage probabilities are adversely affected by asymmetry about the optima and consequently are not reliable unless the sample sizes are large. The use of kernel estimators with higher-order kernels may alleviate this sensitivity to asymmetry. The confidence interval for problem (ii) has high coverage probabilities robust with respect to the shape or symmetry of the underlying dose-response curve.
本文提出了一种用于分析间接生物测定实验中定量反应数据的非参数方法。剂量反应曲线的核估计用于为以下两种情况建立近似置信区间:(i)低剂量时有治疗作用、高剂量时有毒性作用的药物的最佳组合剂量;(ii)有毒化学物质的致死剂量水平。该非参数程序应用于实际数据和模拟数据。当剂量反应曲线关于最优值对称时,问题(i)的置信区间具有较高的覆盖概率。然而,最优值附近的不对称性会对覆盖概率产生不利影响,因此除非样本量很大,否则该置信区间不可靠。使用高阶核的核估计器可能会减轻对不对称性的这种敏感性。问题(ii)的置信区间对于基础剂量反应曲线的形状或对称性具有稳健的高覆盖概率。