BioPlasma Research Group, School of Food Science and Environmental Health,, Technological University Dublin, Dublin, Ireland.
Nanolab, FOCAS Research Institute, Technological University Dublin, Dublin, Ireland.
Sci Rep. 2020 Apr 24;10(1):6985. doi: 10.1038/s41598-020-63732-y.
Cold atmospheric plasma (CAP) enhances uptake and accumulation of nanoparticles and promotes synergistic cytotoxicity against cancer cells. However, the mechanisms are not well understood. In this study, we investigate the enhanced uptake of theranostic nanomaterials by CAP. Numerical modelling of the uptake of gold nanoparticle into U373MG Glioblastoma multiforme (GBM) cells predicts that CAP may introduce a new uptake route. We demonstrate that cell membrane repair pathways play the main role in this stimulated new uptake route, following non-toxic doses of dielectric barrier discharge CAP. CAP treatment induces cellular membrane damage, mainly via lipid peroxidation as a result of reactive oxygen species (ROS) generation. Membranes rich in peroxidised lipids are then trafficked into cells via membrane repairing endocytosis. We confirm that the enhanced uptake of nanomaterials is clathrin-dependent using chemical inhibitors and silencing of gene expression. Therefore, CAP-stimulated membrane repair increases endocytosis and accelerates the uptake of gold nanoparticles into U373MG cells after CAP treatment. We demonstrate the utility of CAP to model membrane oxidative damage in cells and characterise a previously unreported mechanism of membrane repair to trigger nanomaterial uptake. This knowledge will underpin the development of new delivery strategies for theranostic nanoparticles into cancer cells.
冷等离体气相(CAP)可增强纳米颗粒的摄取和积累,并促进其对癌细胞的协同细胞毒性。然而,其机制尚不清楚。在本研究中,我们研究了 CAP 增强治疗性纳米材料摄取的机制。通过数值模拟预测,CAP 可能会引入一种新的摄取途径,从而增加金纳米颗粒进入 U373MG 胶质母细胞瘤(GBM)细胞的摄取。我们证明,在非毒性介电阻挡放电 CAP 剂量下,细胞膜修复途径在这种受刺激的新摄取途径中起着主要作用。CAP 处理会诱导细胞的膜损伤,主要是通过活性氧(ROS)生成导致脂质过氧化。富含过氧化脂质的膜随后通过膜修复内吞作用进入细胞。我们通过化学抑制剂和基因表达沉默证实,纳米材料的摄取增强是网格蛋白依赖性的。因此,CAP 刺激的膜修复会增加内吞作用,并加速 CAP 处理后金纳米颗粒进入 U373MG 细胞的摄取。我们证明了 CAP 可用于模拟细胞中的膜氧化损伤,并描述了一种以前未报道的膜修复机制,以触发纳米材料的摄取。这一知识将为治疗性纳米颗粒向癌细胞的新输送策略提供基础。