Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile.
J Biomed Mater Res A. 2020 Oct;108(10):2032-2043. doi: 10.1002/jbm.a.36963. Epub 2020 Jun 20.
Bioglass nanoparticles (n-BGs, 54SiO :40CaO:6P O mol %) with about 27 nm diameter were synthesized by the sol-gel method and incorporated into a poly(lactic acid) (PLA) matrix by the melting process in order to obtain nanocomposites with filler contents of 5, 10, and 25 wt %. Our results showed that during the cooling scan, the crystallization temperature (T ) of the PLA/n-BG nanocomposites decreased 13°C as compared to neat PLA. The presence of nanoparticles also decreased the thermal stability of the PLA matrix, as nanocomposites presented up to about 20°C lower degradation temperatures in a nitrogen atmosphere. The presence of n-BG increased the stiffness of the polymer matrix, and for instance the composite with 25 wt % of filler presented about 52.6% higher Young's modulus than neat PLA. n-BG incorporation into PLA increased also the hydrolytic degradation of the polymer over time. When the PLA composites were immersed in simulated body fluid, an apatite layer was formed on their surface, as verified by Fourier transform infrared, X-Ray Diffraction (XRD), and scanning electron microscopy-EDS, showing that the presence of n-BG induced bioactivity on the PLA matrix. Moreover, the viability of cervical uterine adenocarcinoma cells was higher on PLA/n-BG nanocomposite with 25 wt % of filler. The presence of n-BG barely gave an antibacterial effect on the polymer matrix, despite the well-known biocidal properties of these nanoparticles. Our results show that the presence of n-BGs is a proper route for improving the bioactivity of PLA with potential application in tissue engineering.
生物玻璃纳米颗粒(n-BG,54SiO:40CaO:6P O mol %)的直径约为 27nm,采用溶胶-凝胶法合成,并通过熔融工艺掺入聚乳酸(PLA)基质中,以获得填充含量为 5、10 和 25wt%的纳米复合材料。我们的结果表明,与纯 PLA 相比,在冷却扫描过程中,PLA/n-BG 纳米复合材料的结晶温度(T)降低了 13°C。纳米颗粒的存在也降低了 PLA 基质的热稳定性,因为纳米复合材料在氮气气氛中呈现出高达约 20°C 的较低降解温度。n-BG 的存在增加了聚合物基质的刚度,例如,填充 25wt%填料的复合材料的杨氏模量比纯 PLA 高约 52.6%。n-BG 掺入 PLA 也随着时间的推移增加了聚合物的水解降解。当 PLA 复合材料浸入模拟体液中时,其表面形成了一层磷灰石,这通过傅里叶变换红外光谱、X 射线衍射(XRD)和扫描电子显微镜-能谱(SEM-EDS)得到证实,表明 n-BG 诱导了 PLA 基质的生物活性。此外,在填充 25wt%填料的 PLA/n-BG 纳米复合材料上,宫颈子宫腺癌细胞的活力更高。尽管这些纳米颗粒具有众所周知的杀菌性能,但 n-BG 对聚合物基质的抗菌效果几乎没有。我们的研究结果表明,n-BG 的存在是提高 PLA 生物活性的一种合适途径,具有潜在的组织工程应用前景。