Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 # 100-00, Cali 76001, Colombia.
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia.
Molecules. 2022 Jun 6;27(11):3640. doi: 10.3390/molecules27113640.
Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as (ATCC 11775), (ATCC 17802), subsp. aureus (ATCC 55804), and (ATCC 13061) at concentrations of 20 /%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (T) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.
基于具有适当机械性能和高生物相容性的生物聚合物和纳米材料的支架是组织工程中所需要的。因此,制备了聚乳酸(PLA)纳米复合材料,其中陶瓷纳米生物玻璃(PLA/n-BGs)的含量为 5wt.%和 10wt.%。纳米生物玻璃(n-BGs)通过溶胶-凝胶法制备,尺寸约为 24.87±6.26nm。此外,它们在 20μg/ml 的浓度下表现出抑制细菌(ATCC 11775、ATCC 17802、金黄色葡萄球菌(ATCC 55804)和大肠杆菌(ATCC 13061)的能力。纳米复合材料微观结构的分析显示出一种不均匀的海绵状形态。力学性能表明,添加 5wt.%的 n-BG 使 PLA 的弹性模量增加了约 91.3%(从 1.49±0.44MPa 增加到 2.85±0.99MPa),并影响了吸收能力,这可以通过生物模型中的组织学分析来证明。n-BG 的加入降低了 PLA 的结晶度(从 7.1%降低到 4.98%),并将玻璃化转变温度(T)从 53°C提高到 63°C。此外,由于纳米颗粒在聚合物链之间的插入以及其运动的减少,n-BG 提高了热稳定性。纳米复合材料的组织植入和 HeLa 细胞的存活率高于 80%表明了它们的生物相容性,其吸收能力大于 PLA。这些结果表明 PLA/n-BGs 纳米复合材料在生物医学应用中的潜力,特别是在骨骼组织修复等需要长期愈合过程中,以及避免微生物污染。