Suppr超能文献

当过去不是序幕:在大流行期间调整信息学实践。

When past is not a prologue: Adapting informatics practice during a pandemic.

机构信息

Institute for Informatics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.

Department of Anesthesiology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.

出版信息

J Am Med Inform Assoc. 2020 Jul 1;27(7):1142-1146. doi: 10.1093/jamia/ocaa073.

Abstract

Data and information technology are key to every aspect of our response to the current coronavirus disease 2019 (COVID-19) pandemic-including the diagnosis of patients and delivery of care, the development of predictive models of disease spread, and the management of personnel and equipment. The increasing engagement of informaticians at the forefront of these efforts has been a fundamental shift, from an academic to an operational role. However, the past history of informatics as a scientific domain and an area of applied practice provides little guidance or prologue for the incredible challenges that we are now tasked with performing. Building on our recent experiences, we present 4 critical lessons learned that have helped shape our scalable, data-driven response to COVID-19. We describe each of these lessons within the context of specific solutions and strategies we applied in addressing the challenges that we faced.

摘要

数据和信息技术是我们应对当前 2019 年冠状病毒病(COVID-19)大流行各个方面的关键,包括患者的诊断和护理的提供、疾病传播预测模型的开发以及人员和设备的管理。信息学家越来越多地参与到这些工作的最前沿,这是一个从学术到业务角色的根本性转变。然而,信息学作为一个科学领域和应用实践领域的历史,几乎没有为我们现在面临的难以置信的挑战提供任何指导或前奏。基于我们最近的经验,我们提出了 4 条重要的经验教训,这些经验教训帮助我们形成了可扩展的数据驱动应对 COVID-19 的方法。我们在描述这些经验教训时,结合了我们在应对所面临挑战时应用的具体解决方案和策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a705/7647335/d06832eb0d87/ocaa073f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验