The Swiss AI Lab, IDSIA, USI & SUPSI, Manno-Lugano, NNAISENSE, Lugano, Switzerland.
Neural Netw. 2020 Jul;127:58-66. doi: 10.1016/j.neunet.2020.04.008. Epub 2020 Apr 13.
I review unsupervised or self-supervised neural networks playing minimax games in game-theoretic settings: (i) Artificial Curiosity (AC, 1990) is based on two such networks. One network learns to generate a probability distribution over outputs, the other learns to predict effects of the outputs. Each network minimizes the objective function maximized by the other. (ii) Generative Adversarial Networks (GANs, 2010-2014) are an application of AC where the effect of an output is 1 if the output is in a given set, and 0 otherwise. (iii) Predictability Minimization (PM, 1990s) models data distributions through a neural encoder that maximizes the objective function minimized by a neural predictor of the code components. I correct a previously published claim that PM is not based on a minimax game.
(i)人工好奇心(AC,1990 年)基于两个这样的网络。一个网络学习生成输出的概率分布,另一个网络学习预测输出的效果。每个网络最小化另一个网络最大化的目标函数。(ii)生成对抗网络(GAN,2010-2014 年)是 AC 的一种应用,其中输出的效果为 1,如果输出在给定集合中,否则为 0。(iii)可预测性最小化(PM,90 年代)通过一个神经网络编码器对数据分布进行建模,该编码器最大化由代码组件的神经网络预测器最小化的目标函数。我纠正了之前发表的关于 PM 不是基于极大极小博弈的说法。