Suppr超能文献

物联网环境下基于深度学习的体育课程推荐系统

The deep learning-based physical education course recommendation system under the internet of things.

作者信息

Zhen Aiyuan, Wang Xin

机构信息

School of Physical Education, Shanghai Normal University, Shanghai, 200234, China.

Faculty of Physical Education, China West Normal University, Nanchong, 637000, China.

出版信息

Heliyon. 2024 Oct 3;10(19):e38907. doi: 10.1016/j.heliyon.2024.e38907. eCollection 2024 Oct 15.

Abstract

This study aims to propose a deep learning (DL)-based physical education course recommendation system by combining the Internet of Things (IoT) technology and DL, to improve the accuracy and personalization of recommendation. Firstly, IoT devices such as smart bracelets and smart clothing are used to monitor students' physiological data in real-time, and IoT sensors are utilized to sense the environment around students. Secondly, IoT devices capture students' social interactions with their peers, recommending socially oriented courses. Meanwhile, by integrating IoT data with students' academic data, course recommendations are optimized to match students' learning progress and schedule. Finally, Generative Adversarial Network (GAN) models, especially the improved Regularization Penalty Conditional Feature Generative Adversarial Network (RP-CFGAN) model, deal with data sparsity and cold start problems. The experimental results show that this model performs well in TopN evaluation and is markedly enhanced compared with traditional models. This study denotes that integrating IoT technology and GAN models can more accurately understand student needs and provide personalized recommendations. Although the model performs well, there is still room for improvement, such as exploring more regularization techniques, protecting user privacy, and extending the system to diverse platforms and scenarios.

摘要

本研究旨在通过结合物联网(IoT)技术和深度学习(DL),提出一种基于深度学习的体育课程推荐系统,以提高推荐的准确性和个性化程度。首先,使用智能手环和智能服装等物联网设备实时监测学生的生理数据,并利用物联网传感器感知学生周围的环境。其次,物联网设备捕捉学生与同伴的社交互动,推荐面向社交的课程。同时,通过将物联网数据与学生的学业数据相结合,优化课程推荐以匹配学生的学习进度和日程安排。最后,生成对抗网络(GAN)模型,特别是改进的正则化惩罚条件特征生成对抗网络(RP-CFGAN)模型,处理数据稀疏性和冷启动问题。实验结果表明,该模型在TopN评估中表现良好,与传统模型相比有显著提升。本研究表明,整合物联网技术和GAN模型可以更准确地了解学生需求并提供个性化推荐。尽管该模型表现良好,但仍有改进空间,例如探索更多正则化技术、保护用户隐私以及将系统扩展到不同平台和场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5947/11492338/3085465aca50/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验