Suppr超能文献

利用已发表的肱骨骨骺人群数据建立的用于未知个体性别估计的定制逻辑回归模型。

Tailored logistic regression models for sex estimation of unknown individuals using the published population data of the humeral epiphyses.

作者信息

Attia MennattAllah Hassan, Aboulnoor Bassam Ahmed El-Sayed

机构信息

Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.

Department of Fixed Prosthodontics, Faculty of Dentistry, Fayoum University, Egypt.

出版信息

Leg Med (Tokyo). 2020 Apr 15;45:101708. doi: 10.1016/j.legalmed.2020.101708.

Abstract

This paper introduces a far-flung approach to formulate population independent models based on the humeral epiphyses as a supplementary tool for biological sex estimation of unknown partial remains. Resources for this study include the published summary statistics of 7 modern populations inhabited the continents of Africa, Asia, Europe, and South America. The regenerated humeral metric data (n = 1490) via truncation approach were modeled using logistic regression. Three fitted models were evaluated for applicability across populations on an independent test sample (n = 430). The experiment was assessed graphically and quantitatively using histogram of posterior probabilities and the classification table. The predictive power of the models was evaluated at the conventional (0.5) and high (0.95) posterior probability thresholds. It was found that the vertical humeral head model is insufficient for sex estimation especially in the European females due to different levels of interpopulation size variability. Interestingly, the distal biepicondylar breadth model showed overall better performance achieving the highest total and sex specific accuracies. Findings indicated that together, the epiphyseal measurements are capable of discriminating sex with overall accuracy of 90.2% which is raised up to 98.8% with 95% confidence of accurate estimates in more than 50% of the test sample. While evidences have been presented pointing to the biological and statistical meaningfulness of the humeral epiphyses model, the analysis allowed pinpointing the utility of the distal biepicondylar breadth model in sex diagnosis in transpopulation application settings. Additionally, few variables are needed to reach satisfactory sex prediction in a diverse sample.

摘要

本文介绍了一种基于肱骨骨骺制定与人群无关模型的广泛方法,作为对未知部分遗骸进行生物性别估计的补充工具。本研究的资源包括已发表的关于居住在非洲、亚洲、欧洲和南美洲大陆的7个现代人群的汇总统计数据。通过截断方法重新生成的肱骨测量数据(n = 1490)使用逻辑回归进行建模。在一个独立测试样本(n = 430)上评估了三个拟合模型在不同人群中的适用性。使用后验概率直方图和分类表对实验进行了图形化和定量评估。在传统(0.5)和高(0.95)后验概率阈值下评估了模型的预测能力。结果发现,由于人群间大小变异水平不同,垂直肱骨头模型在性别估计方面不足,尤其是在欧洲女性中。有趣的是,远端双髁宽度模型总体表现更好,实现了最高的总体和性别特异性准确率。研究结果表明,骨骺测量能够共同以90.2%的总体准确率区分性别,在超过50%的测试样本中,以95%的准确估计置信度,该准确率可提高到98.8%。虽然已有证据表明肱骨骨骺模型具有生物学和统计学意义,但该分析能够确定远端双髁宽度模型在跨人群应用环境中性别诊断的效用。此外,在一个多样化的样本中,只需很少的变量就能实现令人满意的性别预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验