Suppr超能文献

利用二元逻辑回归和线性判别分析评估塞浦路斯希腊族人群肱骨的性别二态性。

Assessment of sexual dimorphism in the humerus among a Greek Cypriot population using binary logistic regression and linear discriminant analysis.

作者信息

Baer Erica, La Valley Anna S H, Kyriakou Xenia-Paula

机构信息

Department of Psychology, Kean University, 1000 Morris Avenue, Union, NJ, 07083, USA.

Department of Forensic Science, University of West London, Brentford, UK.

出版信息

Forensic Sci Med Pathol. 2025 Mar 19. doi: 10.1007/s12024-025-00984-y.

Abstract

PURPOSE

Determining the sex of unknown human remains is pertinent to the reconstruction of biological profiles in forensic anthropology. The Greek Cypriot population is underrepresented in forensic anthropology literature, with only a handful of sex estimation studies having been produced thus far. The aim of this research is to provide accurate and reliable methods for estimating the sex of Greek Cypriot remains to forensically evaluate unknown human remains.

METHODS

This study created classification models using two statistical methods, binary logistic regression (BLR) and linear discriminant function analysis (LDA), to determine which method provided more accurate sex classification based on measurements of the humerus in a Greek Cypriot population. Additionally, cut points were calculated for use in classification. The sample consisted of 119 Greek Cypriots from the Cyprus Research Reference Collection (CRRC; 1975-2015). Four classification models were built, implementing BLR and LDA for both left- and right-side measurements. These models were analyzed using accuracy rates, receiver operating characteristic (ROC) curves, area under the curve (AUC), and Cohen's kappa.

RESULTS

The findings revealed that all four models demonstrated good to excellent classification rates based on AUC (0.88-0.91) and accuracy rates (85.56-87.92%). Maximized summed sensitivity and specificity ratios, ranging between 1.55 and 1.76, were used to determine the optimal cut points by measurement.

CONCLUSION

Based on these results, BLR is a better choice to evaluate sexual dimorphism of the humerus in Greek Cypriots. Further, cut points based on individual measurements can serve as useful markers for classifying humeri by sex.

摘要

目的

确定未知人类遗骸的性别对于法医人类学中生物特征的重建至关重要。希腊塞浦路斯人群在法医人类学文献中的代表性不足,迄今为止仅有少数性别估计研究。本研究的目的是提供准确可靠的方法来估计希腊塞浦路斯遗骸的性别,以便对未知人类遗骸进行法医评估。

方法

本研究使用两种统计方法,二元逻辑回归(BLR)和线性判别函数分析(LDA)创建分类模型,以确定基于希腊塞浦路斯人群肱骨测量值哪种方法能提供更准确的性别分类。此外,还计算了用于分类的切点。样本包括来自塞浦路斯研究参考收藏(CRRC;1975 - 2015)的119名希腊塞浦路斯人。构建了四个分类模型,对左右两侧测量值分别实施BLR和LDA。使用准确率、受试者工作特征(ROC)曲线、曲线下面积(AUC)和科恩kappa系数对这些模型进行分析。

结果

研究结果表明,基于AUC(0.88 - 0.91)和准确率(85.56 - 87.92%),所有四个模型都显示出良好到优秀的分类率。通过测量,使用最大化的总和敏感度和特异度比率(范围在1.55至1.76之间)来确定最佳切点。

结论

基于这些结果,BLR是评估希腊塞浦路斯人肱骨性别二态性的更好选择。此外,基于个体测量的切点可作为按性别对肱骨进行分类的有用标记。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验