School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China.
School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China; Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, Zhengzhou University, Zhengzhou 450001, China.
J Clin Neurosci. 2020 Aug;78:175-180. doi: 10.1016/j.jocn.2020.04.080. Epub 2020 Apr 23.
Mandatory accurate and specific diagnosis demands have brought about increased challenges for radiologists in pediatric posterior fossa tumor prediction and prognosis. With the development of high-performance computing and machine learning technologies, radiomics provides increasing opportunities for clinical decision-making. Several studies have applied radiomics as a decision support tool in intracranial tumors differentiation. Here we seek to achieve preoperative differentiation between ependymoma (EP) and pilocytic astrocytoma (PA) using radiomics analysis method based on machine learning. A total of 135 Magnetic Resonance Imaging (MRI) slices are divided into training sets and validation sets. Three kinds of radiomics features, including Gabor transform, texture and wavelet transform based ones are used to obtain 300 multimodal features. Kruskal-Wallis test score (KWT) and support vector machines (SVM) are applied for feature selection and tumor differentiation. The performance is investigated via accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) analysis. Results show that the accuracy, sensitivity, specificity, and AUC of the selected feature set are 0.8775, 0.9292, 0.8000, and 0.8646 respectively, having no significantdifferencescomparedwiththe overall feature set. For different types of features, texture features yield the best differentiation performance and the significance analysis results are consistent with this. Our study demonstrates texture features perform better than the other features. The radiomics approach based on machine learning is efficient for pediatric posterior fossa tumors differentiation and could enhance the application of radiomics methods for assisted clinical diagnosis.
强制性的准确和具体的诊断要求给儿科后颅窝肿瘤预测和预后的放射科医生带来了更大的挑战。随着高性能计算和机器学习技术的发展,放射组学为临床决策提供了越来越多的机会。一些研究已经将放射组学作为颅内肿瘤分化的决策支持工具。在这里,我们试图使用基于机器学习的放射组学分析方法来实现术前对室管膜瘤 (EP) 和毛细胞星形细胞瘤 (PA) 的区分。总共 135 个磁共振成像 (MRI) 切片被分为训练集和验证集。使用伽伯变换、纹理和小波变换三种放射组学特征来获取 300 种多模态特征。Kruskal-Wallis 检验得分 (KWT) 和支持向量机 (SVM) 用于特征选择和肿瘤分化。通过准确性、敏感性、特异性和接收器工作特征曲线 (AUC) 下面积分析来评估性能。结果表明,所选特征集的准确性、敏感性、特异性和 AUC 分别为 0.8775、0.9292、0.8000 和 0.8646,与整体特征集相比没有显著差异。对于不同类型的特征,纹理特征具有最佳的分化性能,并且与这一结果的显著性分析结果一致。我们的研究表明纹理特征比其他特征表现更好。基于机器学习的放射组学方法对小儿后颅窝肿瘤的分化具有较高的效率,可以增强放射组学方法在辅助临床诊断中的应用。