Suppr超能文献

放射组学和人工智能在小儿脑肿瘤中的应用。

Radiomics and artificial intelligence applications in pediatric brain tumors.

机构信息

Department of Precision Medicine, University of Campania "L. Vanvitelli", Caserta, Italy.

Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.

出版信息

World J Pediatr. 2024 Aug;20(8):747-763. doi: 10.1007/s12519-024-00823-0. Epub 2024 Jun 27.

Abstract

BACKGROUND

The study of central nervous system (CNS) tumors is particularly relevant in the pediatric population because of their relatively high frequency in this demographic and the significant impact on disease- and treatment-related morbidity and mortality. While both morphological and non-morphological magnetic resonance imaging techniques can give important information concerning tumor characterization, grading, and patient prognosis, increasing evidence in recent years has highlighted the need for personalized treatment and the development of quantitative imaging parameters that can predict the nature of the lesion and its possible evolution. For this purpose, radiomics and the use of artificial intelligence software, aimed at obtaining valuable data from images beyond mere visual observation, are gaining increasing importance. This brief review illustrates the current state of the art of this new imaging approach and its contributions to understanding CNS tumors in children.

DATA SOURCES

We searched the PubMed, Scopus, and Web of Science databases using the following key search terms: ("radiomics" AND/OR "artificial intelligence") AND ("pediatric AND brain tumors"). Basic and clinical research literature related to the above key research terms, i.e., studies assessing the key factors, challenges, or problems of using radiomics and artificial intelligence in pediatric brain tumors management, was collected.

RESULTS

A total of 63 articles were included. The included ones were published between 2008 and 2024. Central nervous tumors are crucial in pediatrics due to their high frequency and impact on disease and treatment. MRI serves as the cornerstone of neuroimaging, providing cellular, vascular, and functional information in addition to morphological features for brain malignancies. Radiomics can provide a quantitative approach to medical imaging analysis, aimed at increasing the information obtainable from the pixels/voxel grey-level values and their interrelationships. The "radiomic workflow" involves a series of iterative steps for reproducible and consistent extraction of imaging data. These steps include image acquisition for tumor segmentation, feature extraction, and feature selection. Finally, the selected features, via training predictive model (CNN), are used to test the final model.

CONCLUSIONS

In the field of personalized medicine, the application of radiomics and artificial intelligence (AI) algorithms brings up new and significant possibilities. Neuroimaging yields enormous amounts of data that are significantly more than what can be gained from visual studies that radiologists can undertake on their own. Thus, new partnerships with other specialized experts, such as big data analysts and AI specialists, are desperately needed. We believe that radiomics and AI algorithms have the potential to move beyond their restricted use in research to clinical applications in the diagnosis, treatment, and follow-up of pediatric patients with brain tumors, despite the limitations set out.

摘要

背景

中枢神经系统(CNS)肿瘤的研究在儿科人群中尤为重要,因为它们在这一年龄段的发病率相对较高,并且对疾病和治疗相关的发病率和死亡率有重大影响。虽然形态学和非形态学磁共振成像技术都可以提供有关肿瘤特征、分级和患者预后的重要信息,但近年来越来越多的证据强调了个性化治疗的必要性,以及开发可以预测病变性质及其可能演变的定量成像参数的必要性。为此,放射组学和人工智能软件的使用,旨在从图像中获取超越单纯视觉观察的有价值的数据,正变得越来越重要。这篇简要综述说明了这种新成像方法的现状及其对理解儿童中枢神经系统肿瘤的贡献。

数据来源

我们使用以下关键搜索词在 PubMed、Scopus 和 Web of Science 数据库中进行了搜索:(“放射组学”和/或“人工智能”)和(“儿科和脑肿瘤”)。收集了与上述关键研究术语相关的基础和临床研究文献,即评估使用放射组学和人工智能在儿科脑肿瘤管理中的关键因素、挑战或问题的研究。

结果

共纳入 63 篇文章。纳入的文章发表于 2008 年至 2024 年之间。中枢神经系统肿瘤在儿科中很重要,因为它们的发病率高,而且对疾病和治疗有影响。MRI 是神经影像学的基石,除了形态特征外,还提供细胞、血管和功能信息,用于脑恶性肿瘤。放射组学可以为医学成像分析提供一种定量方法,旨在增加从像素/体素灰度值及其相互关系中获得的信息量。“放射组学工作流程”包括一系列迭代步骤,用于可重复和一致地提取成像数据。这些步骤包括用于肿瘤分割的图像采集、特征提取和特征选择。最后,通过训练预测模型(CNN)选择特征,用于测试最终模型。

结论

在个性化医学领域,放射组学和人工智能(AI)算法的应用带来了新的、重要的可能性。神经影像学产生的大量数据远远超过了放射科医生自己可以进行的视觉研究所能获得的数据。因此,迫切需要与大数据分析师和人工智能专家等其他专业专家建立新的合作伙伴关系。尽管存在限制,但我们相信放射组学和 AI 算法有可能超越其在研究中的有限应用,在儿科脑肿瘤患者的诊断、治疗和随访中应用于临床。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bdcc/11402857/ace709870ca4/12519_2024_823_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验