Suppr超能文献

时间分辨实验室微 X 射线荧光揭示了硅在大豆和向日葵中与锰毒性的关系分布。

Time-resolved laboratory micro-X-ray fluorescence reveals silicon distribution in relation to manganese toxicity in soybean and sunflower.

机构信息

Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia.

Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia.

出版信息

Ann Bot. 2020 Jul 24;126(2):331-341. doi: 10.1093/aob/mcaa081.

Abstract

BACKGROUND AND AIMS

Synchrotron- and laboratory-based micro-X-ray fluorescence (µ-XRF) is a powerful technique to quantify the distribution of elements in physically large intact samples, including live plants, at room temperature and atmospheric pressure. However, analysis of light elements with atomic number (Z) less than that of phosphorus is challenging due to the need for a vacuum, which of course is not compatible with live plant material, or the availability of a helium environment.

METHOD

A new laboratory µ-XRF instrument was used to examine the effects of silicon (Si) on the manganese (Mn) status of soybean (Glycine max) and sunflower (Helianthus annuus) grown at elevated Mn in solution. The use of a helium environment allowed for highly sensitive detection of both Si and Mn to determine their distribution.

KEY RESULTS

The µ-XRF analysis revealed that when Si was added to the nutrient solution, the Si also accumulated in the base of the trichomes, being co-located with the Mn and reducing the darkening of the trichomes. The addition of Si did not reduce the concentrations of Mn in accumulations despite seeming to reduce its adverse effects.

CONCLUSIONS

The ability to gain information on the dynamics of the metallome or ionome within living plants or excised hydrated tissues can offer valuable insights into their ecophysiology, and laboratory µ-XRF is likely to become available to more plant scientists for use in their research.

摘要

背景和目的

同步辐射和基于实验室的微 X 射线荧光(µ-XRF)是一种强大的技术,可以在室温常压下对物理尺寸较大的完整样品中的元素分布进行定量分析,包括活体植物。然而,由于需要真空,因此对原子序数(Z)小于磷的轻元素进行分析具有挑战性,当然这与活体植物材料不兼容,或者氦气环境不可用。

方法

使用新型实验室µ-XRF 仪器研究了硅(Si)对在溶液中升高 Mn 条件下生长的大豆(Glycine max)和向日葵(Helianthus annuus)中 Mn 状态的影响。氦气环境的使用允许对 Si 和 Mn 进行高度灵敏的检测,以确定它们的分布。

主要结果

µ-XRF 分析表明,当向营养液中添加 Si 时,Si 也会在毛状体的基部积累,与 Mn 共定位,并减轻毛状体的黑化。尽管似乎减轻了其不利影响,但添加 Si 并未降低 Mn 在积累物中的浓度。

结论

在活体植物或离体水合组织内获得有关金属组或离子组动态信息的能力可以为其生态生理学提供有价值的见解,并且实验室µ-XRF 可能会为更多植物科学家在其研究中使用。

相似文献

本文引用的文献

10
Multi-Element Bioimaging of Arabidopsis thaliana Roots.拟南芥根的多元素生物成像
Plant Physiol. 2016 Oct;172(2):835-847. doi: 10.1104/pp.16.00770. Epub 2016 Aug 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验