Suppr超能文献

心力衰竭中的组学表型分析:下一个前沿领域。

Omics phenotyping in heart failure: the next frontier.

作者信息

Bayes-Genis Antoni, Liu Peter P, Lanfear David E, de Boer Rudolf A, González Arantxa, Thum Thomas, Emdin Michele, Januzzi James L

机构信息

Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain.

CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.

出版信息

Eur Heart J. 2020 Sep 21;41(36):3477-3484. doi: 10.1093/eurheartj/ehaa270.

Abstract

This state-of-the-art review aims to provide an up-to-date look at breakthrough omic technologies that are helping to unravel heart failure (HF) disease mechanisms and heterogeneity. Genomics, transcriptomics, proteomics, and metabolomics in HF are reviewed in depth. In addition, there is a thorough, expert discussion regarding the value of omics in identifying novel disease pathways, advancing understanding of disease mechanisms, differentiating HF phenotypes, yielding biomarkers for diagnosis or prognosis, or identifying new therapeutic targets in HF. The combination of multiple omics technologies may create a more comprehensive picture of the factors and physiology involved in HF than achieved by either one alone and provides a rich resource for predictive phenotype modelling. However, the successful translation of omics tools as solutions to clinical HF requires that the observations are robust and reproducible and can be validated across multiple independent populations to ensure confidence in clinical decision-making.

摘要

这篇前沿综述旨在对有助于揭示心力衰竭(HF)疾病机制和异质性的突破性组学技术进行最新审视。深入回顾了HF中的基因组学、转录组学、蛋白质组学和代谢组学。此外,还就组学在识别新的疾病途径、深化对疾病机制的理解、区分HF表型、产生诊断或预后生物标志物或识别HF新治疗靶点方面的价值进行了全面、专业的讨论。与单独使用任何一种技术相比,多种组学技术的结合可能会更全面地呈现出参与HF的因素和生理状况,并为预测性表型建模提供丰富资源。然而,要成功地将组学工具转化为临床HF的解决方案,需要确保观察结果可靠且可重复,并能在多个独立人群中得到验证,以确保临床决策的可信度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验