Suppr超能文献

深度学习在子宫内膜癌磁共振成像中肌层浸润深度的测定和自动病灶识别中的应用:单中心初步研究。

Deep learning for the determination of myometrial invasion depth and automatic lesion identification in endometrial cancer MR imaging: a preliminary study in a single institution.

机构信息

Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China.

Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China.

出版信息

Eur Radiol. 2020 Sep;30(9):4985-4994. doi: 10.1007/s00330-020-06870-1. Epub 2020 Apr 26.

Abstract

OBJECTIVE

To determine the diagnostic performance of a deep learning (DL) model in evaluating myometrial invasion (MI) depth on T2-weighted imaging (T2WI)-based endometrial cancer (EC) MR imaging (ECM).

METHODS

We retrospectively enrolled 530 patients with pathologically proven EC at our institution between January 1, 2013, and December 31, 2017. All imaging data were reviewed on picture archiving and communication systems (PACS) server. Both sagittal and coronal T2WI-based MR images were used for lesion area determination. All MR images were divided into two groups: deep (more than 50%) and shallow (less than 50%) MI based on their pathological diagnosis. We trained a detection model based on YOLOv3 algorithm to locate the lesion area on ECM. Then, the detected regions were fed into a classification model based on DL network to identify MI depth automatically.

RESULTS

In the testing dataset, the trained model detected lesion regions with an average precision rate of 77.14% and 86.67% in both sagittal and coronal images, respectively. The classification model yielded an accuracy of 84.78%, a sensitivity of 66.67%, a specificity of 87.50%, a positive predictive value of 44.44%, and a negative predictive value of 94.59% in determining deep MI. The radiologists and trained network model together yielded an accuracy of 86.2%, a sensitivity of 77.8%, a specificity of 87.5%, a positive predictive value of 48.3%, and a negative predictive value of 96.3%.

CONCLUSION

In this study, the DL network model derived from MR imaging provided a competitive, time-efficient diagnostic performance in MI depth identification.

KEY POINTS

• The models established with the deep learning method could help improve the diagnostic confidence and performance of MI identification based on endometrial cancer MR imaging. • The models enabled the classification of endometrial cancer MR images to the two categories with a sensitivity of 0.67, a specificity of 0.88, and an accuracy of 0.85. • Using the detected lesion region to evaluate myometrial invasion depth could remove redundant information in the image and provide more effective features.

摘要

目的

评估深度学习(DL)模型在基于 T2 加权成像(T2WI)的子宫内膜癌(EC)磁共振成像(ECM)中评估子宫肌层浸润(MI)深度的诊断性能。

方法

我们回顾性纳入了 2013 年 1 月 1 日至 2017 年 12 月 31 日在我院经病理证实的 530 例 EC 患者。所有影像数据均在影像存档与通信系统(PACS)服务器上进行评估。矢状位和冠状位 T2WI 均用于确定病灶面积。所有 MRI 图像均根据病理诊断分为深肌层浸润(超过 50%)和浅肌层浸润(小于 50%)两组。我们基于 YOLOv3 算法训练了一个检测模型,以定位 ECM 上的病灶区域。然后,将检测到的区域输入基于深度学习网络的分类模型,自动识别 MI 深度。

结果

在测试数据集,训练后的模型在矢状位和冠状位图像上检测到病灶区域的平均精度率分别为 77.14%和 86.67%。分类模型在确定深肌层浸润时的准确率为 84.78%、灵敏度为 66.67%、特异性为 87.50%、阳性预测值为 44.44%、阴性预测值为 94.59%。放射科医生和训练后的网络模型联合诊断的准确率为 86.2%、灵敏度为 77.8%、特异性为 87.5%、阳性预测值为 48.3%、阴性预测值为 96.3%。

结论

在这项研究中,基于磁共振成像的深度学习网络模型在 MI 深度识别方面提供了一种具有竞争力、高效的诊断性能。

重点

  1. 基于深度学习方法建立的模型有助于提高基于子宫内膜癌磁共振成像的 MI 识别诊断信心和性能。

  2. 该模型可将子宫内膜癌 MRI 分类为两个类别,其灵敏度为 0.67,特异性为 0.88,准确率为 0.85。

  3. 使用检测到的病灶区域来评估子宫肌层浸润深度可以去除图像中的冗余信息,并提供更有效的特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验