Suppr超能文献

基于扩散加权成像深度学习和影像组学特征的子宫内膜癌TP53突变评估

Estimation of TP53 mutations for endometrial cancer based on diffusion-weighted imaging deep learning and radiomics features.

作者信息

Shen Lei, Dai Bo, Dou Shewei, Yan Fengshan, Yang Tianyun, Wu Yaping

机构信息

Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.

出版信息

BMC Cancer. 2025 Jan 9;25(1):45. doi: 10.1186/s12885-025-13424-5.

Abstract

OBJECTIVES

To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

METHODS

DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed. Feature selection was performed using Mann-Whitney U test, LASSO regression, and SelectKBest. Prediction models were established by gaussian process (GP) and decision tree (DT) algorithms and evaluated by the area under the receiver operating characteristic curve (AUC), net reclassification index (NRI), calibration curves, and decision curve analysis (DCA).

RESULTS

Compared to the DL (AUC = 0.830, AUC = 0.779, and AUC = 0.711), radiomics (AUC = 0.810, AUC = 0.710, and AUC = 0.839), and clinical (AUC = 0.780, AUC = 0.685, and AUC = 0.695) models, the combined model based on the GP algorithm, which consisted of four DL features, five radiomics features, and two clinical variables, not only demonstrated the highest diagnostic efficacy (AUC = 0.949, AUC = 0.877, and AUC = 0.914) but also led to an improvement in risk reclassification of the TP53 mutation (NIR = 66.38%, 56.98%, and 83.48%, NIR = 50.72%, 80.43%, and 89.49%, and NIR = 64.58%, 87.50%, and 120.83%, respectively). In addition, the combined model exhibited good agreement and clinical utility in calibration curves and DCA analyses, respectively.

CONCLUSIONS

A prediction model based on the GP algorithm and consisting of DL and radiomics features of DWI as well as clinical variables can effectively assess TP53 mutation in EC.

摘要

目的

构建基于深度学习(DL)和扩散加权成像(DWI)的影像组学特征以及临床变量的预测模型,用于评估子宫内膜癌(EC)中的TP53突变。

方法

本研究纳入了155例EC患者的DWI和临床数据,其中80例在训练集,35例在测试集,40例在外部验证集。分析了影像组学特征、基于卷积神经网络的DL特征和临床变量。使用曼-惠特尼U检验、LASSO回归和SelectKBest进行特征选择。通过高斯过程(GP)和决策树(DT)算法建立预测模型,并通过受试者工作特征曲线下面积(AUC)、净重新分类指数(NRI)、校准曲线和决策曲线分析(DCA)进行评估。

结果

与DL模型(AUC分别为0.830、0.779和0.711)、影像组学模型(AUC分别为0.810、0.710和0.839)和临床模型(AUC分别为0.780、0.685和0.695)相比,基于GP算法的联合模型由四个DL特征、五个影像组学特征和两个临床变量组成,不仅显示出最高的诊断效能(AUC分别为0.949、0.877和0.914),而且还导致TP53突变风险重新分类的改善(NIR分别为66.38%、56.98%和83.48%,NIR分别为50.72%、80.43%和89.49%,以及NIR分别为64.58%、87.50%和120.83%)。此外,联合模型在校准曲线和DCA分析中分别表现出良好的一致性和临床实用性。

结论

基于GP算法、由DWI的DL和影像组学特征以及临床变量组成的预测模型能够有效评估EC中的TP53突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba96/11715916/396805aef80d/12885_2025_13424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验