Suppr超能文献

迈向氧化石墨烯生物影响的高维单细胞分析:通过单细胞质谱流式细胞术追踪免疫细胞

Toward High-Dimensional Single-Cell Analysis of Graphene Oxide Biological Impact: Tracking on Immune Cells by Single-Cell Mass Cytometry.

作者信息

Orecchioni Marco, Bordoni Valentina, Fuoco Claudia, Reina Giacomo, Lin Hazel, Zoccheddu Martina, Yilmazer Acelya, Zavan Barbara, Cesareni Gianni, Bedognetti Davide, Bianco Alberto, Delogu Lucia Gemma

机构信息

Department of Chemistry and Pharmacy University of Sassari, Sassari, 07100, Italy.

Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy.

出版信息

Small. 2020 May;16(21):e2000123. doi: 10.1002/smll.202000123. Epub 2020 Apr 27.

Abstract

Considering the potential exposure to graphene, the most investigated nanomaterial, the assessment of the impact on human health has become an urgent need. The deep understanding of nanomaterial safety is today possible by high-throughput single-cell technologies. Single-cell mass cytometry (cytometry by time-of flight, CyTOF) shows an unparalleled ability to phenotypically and functionally profile complex cellular systems, in particular related to the immune system, as recently also proved for graphene impact. The next challenge is to track the graphene distribution at the single-cell level. Therefore, graphene oxide (GO) is functionalized with AgInS nanocrystals (GO-In), allowing to trace GO immune-cell interactions via the indium ( In) channel. Indium is specifically chosen to avoid overlaps with the commercial panels (>30 immune markers). As a proof of concept, the GO-In CyTOF tracking is performed at the single-cell level on blood immune subpopulations, showing the GO interaction with monocytes and B cells, therefore guiding future immune studies. The proposed approach can be applied not only to the immune safety assessment of the multitude of graphene physical and chemical parameters, but also for graphene applications in neuroscience. Moreover, this approach can be translated to other 2D emerging materials and will likely advance the understanding of their toxicology.

摘要

鉴于石墨烯(研究最多的纳米材料)可能存在的暴露风险,评估其对人类健康的影响已成为当务之急。如今,通过高通量单细胞技术能够深入了解纳米材料的安全性。单细胞质谱流式细胞术(飞行时间质谱流式细胞术,CyTOF)展现出了在表型和功能上剖析复杂细胞系统的无与伦比的能力,特别是与免疫系统相关的系统,最近关于石墨烯影响的研究也证明了这一点。下一个挑战是在单细胞水平追踪石墨烯的分布。因此,用AgInS纳米晶体(GO-In)对氧化石墨烯(GO)进行功能化处理,从而能够通过铟(In)通道追踪GO与免疫细胞的相互作用。特意选择铟是为了避免与商用检测板(>30种免疫标志物)产生重叠。作为概念验证,在血液免疫亚群的单细胞水平上进行了GO-In CyTOF追踪,结果显示GO与单核细胞和B细胞有相互作用,从而为未来的免疫研究提供了指导。所提出的方法不仅可应用于对多种石墨烯物理和化学参数的免疫安全性评估,还可用于石墨烯在神经科学中的应用。此外,这种方法可以推广到其他二维新兴材料,并且可能会推动对其毒理学的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验