Suppr超能文献

动态电子健康记录图上的协调表示学习。

Harmonized representation learning on dynamic EHR graphs.

机构信息

Pohang University of Science and Technology, Pohang, Republic of Korea.

University of Texas Health Science Center at Houston, Houston, TX, United States.

出版信息

J Biomed Inform. 2020 Jun;106:103426. doi: 10.1016/j.jbi.2020.103426. Epub 2020 Apr 25.

Abstract

With the rise of deep learning, several recent studies on deep learning-based methods for electronic health records (EHR) successfully address real-world clinical challenges by utilizing effective representations of medical entities. However, existing EHR representation learning methods that focus on only diagnosis codes have limited clinical value, because such structured codes cannot concretely describe patients' medical conditions, and furthermore, some of the codes assigned to patients contain errors and inconsistency; this is one of the well-known caveats in the EHR. To overcome this limitation, in this paper, we fuse more detailed and accurate information in the form of natural language provided by unstructured clinical data sources (i.e., clinical notes). We propose HORDE, a unified graph representation learning framework to embed heterogeneous medical entities into a harmonized space for further downstream analyses as well as robustness to inconsistency in structured codes. Our extensive experiments demonstrate that HORDE significantly improves the performances of conventional clinical tasks such as subsequent code prediction and patient severity classification compared to existing methods, and also show the promising results of a novel EHR analysis about the consistency of each diagnosis code assignment.

摘要

随着深度学习的兴起,最近有几项基于深度学习的方法研究成功地利用医学实体的有效表示来应对现实世界中的临床挑战。然而,现有的专注于诊断代码的电子健康记录 (EHR) 表示学习方法的临床价值有限,因为这些结构化代码无法具体描述患者的病情,而且有些分配给患者的代码包含错误和不一致;这是 EHR 中众所周知的一个缺陷。为了克服这一限制,在本文中,我们融合了来自非结构化临床数据源(即临床记录)的自然语言提供的更详细和准确的信息。我们提出了 HORDE,这是一个统一的图表示学习框架,将异构的医学实体嵌入到一个协调的空间中,以便进一步进行下游分析,并对结构化代码中的不一致性具有鲁棒性。我们的广泛实验表明,与现有方法相比,HORDE 显著提高了后续代码预测和患者严重程度分类等传统临床任务的性能,并且还展示了关于每个诊断代码分配一致性的新型 EHR 分析的有前途的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验