Suppr超能文献

数据驱动的医疗质量改进:系统文献回顾。

Data Quality-Driven Improvement in Health Care: Systematic Literature Review.

机构信息

Clinical Outcomes and Data Unit, The Christie NHS Foundation Trust, Manchester, United Kingdom.

Radiotherapy Related Research Group, University of Manchester, Manchester, United Kingdom.

出版信息

J Med Internet Res. 2024 Aug 22;26:e57615. doi: 10.2196/57615.

Abstract

BACKGROUND

The promise of real-world evidence and the learning health care system primarily depends on access to high-quality data. Despite widespread awareness of the prevalence and potential impacts of poor data quality (DQ), best practices for its assessment and improvement are unknown.

OBJECTIVE

This review aims to investigate how existing research studies define, assess, and improve the quality of structured real-world health care data.

METHODS

A systematic literature search of studies in the English language was implemented in the Embase and PubMed databases to select studies that specifically aimed to measure and improve the quality of structured real-world data within any clinical setting. The time frame for the analysis was from January 1945 to June 2023. We standardized DQ concepts according to the Data Management Association (DAMA) DQ framework to enable comparison between studies. After screening and filtering by 2 independent authors, we identified 39 relevant articles reporting DQ improvement initiatives.

RESULTS

The studies were characterized by considerable heterogeneity in settings and approaches to DQ assessment and improvement. Affiliated institutions were from 18 different countries and 18 different health domains. DQ assessment methods were largely manual and targeted completeness and 1 other DQ dimension. Use of DQ frameworks was limited to the Weiskopf and Weng (3/6, 50%) or Kahn harmonized model (3/6, 50%). Use of standardized methodologies to design and implement quality improvement was lacking, but mainly included plan-do-study-act (PDSA) or define-measure-analyze-improve-control (DMAIC) cycles. Most studies reported DQ improvements using multiple interventions, which included either DQ reporting and personalized feedback (24/39, 61%), IT-related solutions (21/39, 54%), training (17/39, 44%), improvements in workflows (5/39, 13%), or data cleaning (3/39, 8%). Most studies reported improvements in DQ through a combination of these interventions. Statistical methods were used to determine significance of treatment effect (22/39, 56% times), but only 1 study implemented a randomized controlled study design. Variability in study designs, approaches to delivering interventions, and reporting DQ changes hindered a robust meta-analysis of treatment effects.

CONCLUSIONS

There is an urgent need for standardized guidelines in DQ improvement research to enable comparison and effective synthesis of lessons learned. Frameworks such as PDSA learning cycles and the DAMA DQ framework can facilitate this unmet need. In addition, DQ improvement studies can also benefit from prioritizing root cause analysis of DQ issues to ensure the most appropriate intervention is implemented, thereby ensuring long-term, sustainable improvement. Despite the rise in DQ improvement studies in the last decade, significant heterogeneity in methodologies and reporting remains a challenge. Adopting standardized frameworks for DQ assessment, analysis, and improvement can enhance the effectiveness, comparability, and generalizability of DQ improvement initiatives.

摘要

背景

真实世界证据和学习型医疗保健系统的承诺主要取决于高质量数据的获取。尽管人们普遍认识到数据质量(DQ)的普遍性和潜在影响,但评估和改善数据质量的最佳实践方法尚不清楚。

目的

本综述旨在调查现有研究如何定义、评估和改善结构化真实世界医疗保健数据的质量。

方法

对 Embase 和 PubMed 数据库中的英语研究进行系统文献检索,以选择专门旨在衡量和改善任何临床环境中结构化真实世界数据质量的研究。分析的时间范围为 1945 年 1 月至 2023 年 6 月。我们根据数据管理协会(DAMA)DQ 框架标准化了 DQ 概念,以实现研究之间的比较。经过两位独立作者的筛选和过滤,我们确定了 39 篇报道结构化数据质量改进举措的相关文章。

结果

研究在 DQ 评估和改进的背景和方法上存在很大的异质性。附属机构来自 18 个不同的国家和 18 个不同的健康领域。DQ 评估方法主要是手动的,针对完整性和其他 1 个 DQ 维度。仅使用了 Weiskopf 和 Weng(3/6,50%)或 Kahn 协调模型(3/6,50%)的 DQ 框架。缺乏使用标准化方法设计和实施质量改进的方法,但主要包括计划-执行-研究-行动(PDSA)或定义-测量-分析-改进-控制(DMAIC)循环。大多数研究使用多种干预措施报告了 DQ 改进,其中包括 DQ 报告和个性化反馈(24/39,61%)、IT 相关解决方案(21/39,54%)、培训(17/39,44%)、工作流程改进(5/39,13%)或数据清理(3/39,8%)。大多数研究通过这些干预措施的组合报告了 DQ 的改进。统计方法用于确定治疗效果的显著性(22/39,56%次),但只有 1 项研究实施了随机对照研究设计。研究设计、干预措施实施方法和 DQ 变化报告的多样性阻碍了对治疗效果的稳健荟萃分析。

结论

DQ 改进研究急需标准化指南,以实现经验教训的比较和有效综合。例如 PDSA 学习循环和 DAMA DQ 框架等框架可以满足这一未满足的需求。此外,DQ 改进研究还可以从根本原因分析 DQ 问题中受益,以确保实施最适当的干预措施,从而确保长期、可持续的改进。尽管过去十年 DQ 改进研究有所增加,但在方法和报告方面仍然存在很大的异质性。采用标准化的 DQ 评估、分析和改进框架可以提高 DQ 改进计划的有效性、可比性和通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e365/11377907/91c4f3eca853/jmir_v26i1e57615_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验