Ji Xinglai, Yu Zefen, Yang Jinkui, Xu Jianping, Zhang Ying, Liu Shuqun, Zou Chenggang, Li Juan, Liang Lianming, Zhang Ke-Qin
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
iScience. 2020 May 22;23(5):101057. doi: 10.1016/j.isci.2020.101057. Epub 2020 Apr 13.
Understanding how fungi interact with other organisms has significant medical, environmental, and agricultural implications. Nematode-trapping fungi (NTF) can switch to pathogens by producing various trapping devices to capture nematodes. Here we perform comparative genomic analysis of the NTF with four representative trapping devices. Phylogenomic reconstruction of these NTF suggested an evolutionary trend of trapping device simplification in morphology. Interestingly, trapping device simplification was accompanied by expansion of gene families encoding adhesion proteins and their increasing adhesiveness on trap surfaces. Gene expression analysis revealed a consistent up-regulation of the adhesion genes during their lifestyle transition from saprophytic to nematophagous stages. Our results suggest that the expansion of adhesion genes in NTF genomes and consequential increase in trap surface adhesiveness are likely the key drivers of fungal adaptation in trapping nematodes, providing new insights into understanding mechanisms underlying infection and adaptation of pathogenic fungi.
了解真菌如何与其他生物相互作用具有重大的医学、环境和农业意义。捕食线虫真菌(NTF)可以通过产生各种捕捉装置来捕获线虫,从而转变为病原体。在这里,我们对具有四种代表性捕捉装置的NTF进行了比较基因组分析。这些NTF的系统发育重建表明,捕捉装置在形态上呈现出简化的进化趋势。有趣的是,捕捉装置的简化伴随着编码粘附蛋白的基因家族的扩张以及它们在陷阱表面粘附性的增加。基因表达分析显示,在它们从腐生阶段到捕食线虫阶段的生活方式转变过程中,粘附基因持续上调。我们的结果表明,NTF基因组中粘附基因的扩张以及随之而来的陷阱表面粘附性的增加可能是真菌适应捕食线虫的关键驱动因素,为理解致病真菌的感染和适应机制提供了新的见解。