Suppr超能文献

优化用于贝叶斯网络基于顺序学习的正则化乔列斯基评分

Optimizing Regularized Cholesky Score for Order-Based Learning of Bayesian Networks.

作者信息

Ye Qiaoling, Amini Arash A, Zhou Qing

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3555-3572. doi: 10.1109/TPAMI.2020.2990820. Epub 2021 Sep 2.

Abstract

Bayesian networks are a class of popular graphical models that encode causal and conditional independence relations among variables by directed acyclic graphs (DAGs). We propose a novel structure learning method, annealing on regularized Cholesky score (ARCS), to search over topological sorts, or permutations of nodes, for a high-scoring Bayesian network. Our scoring function is derived from regularizing Gaussian DAG likelihood, and its optimization gives an alternative formulation of the sparse Cholesky factorization problem from a statistical viewpoint. We combine simulated annealing over permutation space with a fast proximal gradient algorithm, operating on triangular matrices of edge coefficients, to compute the score of any permutation. Combined, the two approaches allow us to quickly and effectively search over the space of DAGs without the need to verify the acyclicity constraint or to enumerate possible parent sets given a candidate topological sort. The annealing aspect of the optimization is able to consistently improve the accuracy of DAGs learned by greedy and deterministic search algorithms. In addition, we develop several techniques to facilitate the structure learning, including pre-annealing data-driven tuning parameter selection and post-annealing constraint-based structure refinement. Through extensive numerical comparisons, we show that ARCS outperformed existing methods by a substantial margin, demonstrating its great advantage in structure learning of Bayesian networks from both observational and experimental data. We also establish the consistency of our scoring function in estimating topological sorts and DAG structures in the large-sample limit. Source code of ARCS is available at https://github.com/yeqiaoling/arcs_bn.

摘要

贝叶斯网络是一类流行的图形模型,它通过有向无环图(DAG)对变量之间的因果关系和条件独立关系进行编码。我们提出了一种新颖的结构学习方法,即正则化Cholesky评分退火(ARCS),用于在拓扑排序或节点排列中搜索高分贝叶斯网络。我们的评分函数源自对高斯DAG似然进行正则化,从统计角度来看,对其进行优化给出了稀疏Cholesky分解问题的另一种表述。我们将排列空间上的模拟退火与一种快速近端梯度算法相结合,该算法作用于边系数的三角矩阵,以计算任何排列的分数。这两种方法相结合,使我们能够快速有效地在DAG空间中进行搜索,而无需验证无环性约束或在给定候选拓扑排序的情况下枚举可能的父节点集。优化的退火方面能够持续提高通过贪婪和确定性搜索算法学习到的DAG的准确性。此外,我们开发了几种技术来促进结构学习,包括退火前的数据驱动调整参数选择和退火后的基于约束的结构细化。通过广泛的数值比较,我们表明ARCS比现有方法有显著优势,证明了其在从观测数据和实验数据进行贝叶斯网络结构学习中的巨大优势。我们还在大样本极限下建立了我们的评分函数在估计拓扑排序和DAG结构方面的一致性。ARCS的源代码可在https://github.com/yeqiaoling/arcs_bn获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验