Suppr超能文献

使用最佳顺序分数搜索和生长-收缩树快速、可扩展且准确地发现有向无环图

Fast Scalable and Accurate Discovery of DAGs Using the Best Order Score Search and Grow-Shrink Trees.

作者信息

Andrews Bryan, Ramsey Joseph, Sánchez-Romero Rubén, Camchong Jazmin, Kummerfeld Erich

机构信息

Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454.

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213.

出版信息

Adv Neural Inf Process Syst. 2023 Dec;36:63945-63956. Epub 2024 May 30.

Abstract

Learning graphical conditional independence structures is an important machine learning problem and a cornerstone of causal discovery. However, the accuracy and execution time of learning algorithms generally struggle to scale to problems with hundreds of highly connected variables-for instance, recovering brain networks from fMRI data. We introduce the best order score search (BOSS) and grow-shrink trees (GSTs) for learning directed acyclic graphs (DAGs) in this paradigm. BOSS greedily searches over permutations of variables, using GSTs to construct and score DAGs from permutations. GSTs efficiently cache scores to eliminate redundant calculations. BOSS achieves state-of-the-art performance in accuracy and execution time, comparing favorably to a variety of combinatorial and gradient-based learning algorithms under a broad range of conditions. To demonstrate its practicality, we apply BOSS to two sets of resting-state fMRI data: simulated data with pseudo-empirical noise distributions derived from randomized empirical fMRI cortical signals and clinical data from 3T fMRI scans processed into cortical parcels. BOSS is available for use within the TETRAD project which includes Python and R wrappers.

摘要

学习图形条件独立结构是一个重要的机器学习问题,也是因果发现的基石。然而,学习算法的准确性和执行时间通常难以扩展到具有数百个高度连接变量的问题——例如,从功能磁共振成像(fMRI)数据中恢复脑网络。在此范式下,我们引入了最佳顺序分数搜索(BOSS)和生长收缩树(GST)来学习有向无环图(DAG)。BOSS通过GST从变量排列中构建和评分DAG,贪婪地搜索变量排列。GST有效地缓存分数以消除冗余计算。在广泛的条件下,与各种组合和基于梯度的学习算法相比,BOSS在准确性和执行时间方面都达到了当前的最佳性能。为了证明其实用性,我们将BOSS应用于两组静息态fMRI数据:一组是具有从随机经验性fMRI皮质信号导出的伪经验噪声分布的模拟数据,另一组是经过处理成为皮质包裹的3T fMRI扫描临床数据。BOSS可在TETRAD项目中使用,该项目包括Python和R包装器。

相似文献

2
Optimizing Regularized Cholesky Score for Order-Based Learning of Bayesian Networks.优化用于贝叶斯网络基于顺序学习的正则化乔列斯基评分
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3555-3572. doi: 10.1109/TPAMI.2020.2990820. Epub 2021 Sep 2.
4
Nonparametric Causal Structure Learning in High Dimensions.高维非参数因果结构学习
Entropy (Basel). 2022 Feb 28;24(3):351. doi: 10.3390/e24030351.
7
10
NBS-Predict: A prediction-based extension of the network-based statistic.NBS-Predict:基于网络统计的预测扩展。
Neuroimage. 2021 Dec 1;244:118625. doi: 10.1016/j.neuroimage.2021.118625. Epub 2021 Oct 2.

本文引用的文献

7
A multi-modal parcellation of human cerebral cortex.人类大脑皮层的多模态分区
Nature. 2016 Aug 11;536(7615):171-178. doi: 10.1038/nature18933. Epub 2016 Jul 20.
8
Emergence of scaling in random networks.随机网络中幂律分布的出现。
Science. 1999 Oct 15;286(5439):509-12. doi: 10.1126/science.286.5439.509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验