Suppr超能文献

荧光计时器报告器可实现根据年龄对胰岛素分泌颗粒进行分选。

A fluorescent timer reporter enables sorting of insulin secretory granules by age.

机构信息

Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.

STEM-Department of Biology, Edmonds Community College, Lynnwood, Washington, USA.

出版信息

J Biol Chem. 2020 Jul 3;295(27):8901-8911. doi: 10.1074/jbc.RA120.012432. Epub 2020 Apr 27.

Abstract

Within the pancreatic β-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in β-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from β-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the β-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in β-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 β-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the β-cell environment in the mouse islets and in C57BL/6J islets exposed to different glucose environments.

摘要

在胰腺β细胞中,胰岛素分泌颗粒(SGs)存在于功能上不同的池中,其运动以及对接和融合能力存在差异。目前增加胰岛素分泌的疗法并没有考虑到这些不同的 SG 池的存在。因此,这些方法仅在短期内有效,随着β细胞功能的持续下降,血糖恶化与随之而来的情况。胰岛素颗粒的年龄作为一个决定因素,说明为什么选择一个胰岛素颗粒进行分泌,并且可以解释为什么新合成的胰岛素优先从β细胞分泌。在这里,我们使用一种新型荧光计时蛋白,旨在研究胰岛素分泌的优先分泌模型,并确定颗粒老化如何受到β细胞环境变化的影响,例如高血糖。我们展示了使用荧光计时蛋白构建体,syncollin-dsRedE5TIMER,其在 18 小时内从绿色变为红色,可用于显微镜和荧光辅助细胞器分选技术。我们证实,该 SG 靶向构建体定位于β细胞中的胰岛素颗粒,并且不会干扰正常的胰岛素 SG 行为。我们在 MIN6 和 INS1 β细胞系以及原代 C57BL/6J 小鼠和非糖尿病人类胰岛细胞中观察到胰岛素 SG 老化行为。最后,我们分离了年轻和年老的胰岛素 SG,结果表明年轻颗粒的优先分泌发生在葡萄糖刺激的胰岛素分泌中。我们还表明,SG 群体的年龄受β细胞环境的调节,在小鼠胰岛中,以及在暴露于不同葡萄糖环境的 C57BL/6J 胰岛中。

相似文献

1
A fluorescent timer reporter enables sorting of insulin secretory granules by age.
J Biol Chem. 2020 Jul 3;295(27):8901-8911. doi: 10.1074/jbc.RA120.012432. Epub 2020 Apr 27.
2
Syntaxin-3 regulates newcomer insulin granule exocytosis and compound fusion in pancreatic beta cells.
Diabetologia. 2013 Feb;56(2):359-69. doi: 10.1007/s00125-012-2757-0. Epub 2012 Nov 7.
3
Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion.
Proc Natl Acad Sci U S A. 2004 Jun 22;101(25):9266-71. doi: 10.1073/pnas.0403201101. Epub 2004 Jun 14.
4
Age-dependent labeling and imaging of insulin secretory granules.
Diabetes. 2013 Nov;62(11):3687-96. doi: 10.2337/db12-1819. Epub 2013 Aug 8.
5
Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis.
Diabetes Obes Metab. 2017 Sep;19 Suppl 1:115-123. doi: 10.1111/dom.13001.
6
α-Synuclein binds the K(ATP) channel at insulin-secretory granules and inhibits insulin secretion.
Am J Physiol Endocrinol Metab. 2011 Feb;300(2):E276-86. doi: 10.1152/ajpendo.00262.2010. Epub 2010 Sep 21.
7
Age matters: Grading granule secretion in beta cells.
J Biol Chem. 2020 Jul 3;295(27):8912-8913. doi: 10.1074/jbc.H120.014586.
9
Deploying insulin granule-granule fusion to rescue deficient insulin secretion in diabetes.
Diabetologia. 2012 Apr;55(4):877-80. doi: 10.1007/s00125-012-2483-7. Epub 2012 Feb 4.

引用本文的文献

1
Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer.
Nat Commun. 2025 Jul 1;16(1):5720. doi: 10.1038/s41467-025-61279-y.
3
Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes.
iScience. 2024 Dec 30;28(2):111719. doi: 10.1016/j.isci.2024.111719. eCollection 2025 Feb 21.
4
Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.
Life Metab. 2024 Nov 19;4(1):loae038. doi: 10.1093/lifemeta/loae038. eCollection 2025 Feb.
6
Decoding Insulin Secretory Granule Maturation Using Genetically Encoded pH Sensors.
ACS Sens. 2024 Nov 22;9(11):6032-6039. doi: 10.1021/acssensors.4c01885. Epub 2024 Nov 6.
8
Organelle landscape analysis using a multiparametric particle-based method.
PLoS Biol. 2024 Sep 17;22(9):e3002777. doi: 10.1371/journal.pbio.3002777. eCollection 2024 Sep.
9
10
Unraveling T-cell dynamics using fluorescent timer: Insights from the Tocky system.
Biophys Physicobiol. 2024 Feb 16;21(Supplemental):e211010. doi: 10.2142/biophysico.bppb-v21.s010. eCollection 2024.

本文引用的文献

1
Lysosomal degradation of newly formed insulin granules contributes to β cell failure in diabetes.
Nat Commun. 2019 Jul 25;10(1):3312. doi: 10.1038/s41467-019-11170-4.
2
Proteomic Analysis of Restored Insulin Production and Trafficking in Obese Diabetic Mouse Pancreatic Islets Following Euglycemia.
J Proteome Res. 2019 Sep 6;18(9):3245-3258. doi: 10.1021/acs.jproteome.9b00160. Epub 2019 Jul 31.
3
β-Cell Control of Insulin Production During Starvation-Refeeding in Male Rats.
Endocrinology. 2018 Feb 1;159(2):895-906. doi: 10.1210/en.2017-03120.
4
Clinical Islet Isolation.
Adv Exp Med Biol. 2016;938:89-122. doi: 10.1007/978-3-319-39824-2_7.
5
Changes in beta cell function occur in prediabetes and early disease in the Lepr (db) mouse model of diabetes.
Diabetologia. 2016 Jun;59(6):1222-30. doi: 10.1007/s00125-016-3942-3. Epub 2016 Apr 5.
7
Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies.
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):E667-76. doi: 10.1073/pnas.1409542112. Epub 2015 Feb 2.
8
SORCS1 is necessary for normal insulin secretory granule biogenesis in metabolically stressed β cells.
J Clin Invest. 2014 Oct;124(10):4240-56. doi: 10.1172/JCI74072. Epub 2014 Aug 26.
9
Here come the newcomer granules, better late than never.
Trends Endocrinol Metab. 2014 Aug;25(8):381-8. doi: 10.1016/j.tem.2014.03.005. Epub 2014 Apr 16.
10
Age-dependent labeling and imaging of insulin secretory granules.
Diabetes. 2013 Nov;62(11):3687-96. doi: 10.2337/db12-1819. Epub 2013 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验