Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
STEM-Department of Biology, Edmonds Community College, Lynnwood, Washington, USA.
J Biol Chem. 2020 Jul 3;295(27):8901-8911. doi: 10.1074/jbc.RA120.012432. Epub 2020 Apr 27.
Within the pancreatic β-cells, insulin secretory granules (SGs) exist in functionally distinct pools, displaying variations in motility as well as docking and fusion capability. Current therapies that increase insulin secretion do not consider the existence of these distinct SG pools. Accordingly, these approaches are effective only for a short period, with a worsening of glycemia associated with continued decline in β-cell function. Insulin granule age is underappreciated as a determinant for why an insulin granule is selected for secretion and may explain why newly synthesized insulin is preferentially secreted from β-cells. Here, using a novel fluorescent timer protein, we aimed to investigate the preferential secretion model of insulin secretion and identify how granule aging is affected by variation in the β-cell environment, such as hyperglycemia. We demonstrate the use of a fluorescent timer construct, syncollin-dsRedE5TIMER, which changes its fluorescence from green to red over 18 h, in both microscopy and fluorescence-assisted organelle-sorting techniques. We confirm that the SG-targeting construct localizes to insulin granules in β-cells and does not interfere with normal insulin SG behavior. We visualize insulin SG aging behavior in MIN6 and INS1 β-cell lines and in primary C57BL/6J mouse and nondiabetic human islet cells. Finally, we separated young and old insulin SGs, revealing that preferential secretion of younger granules occurs in glucose-stimulated insulin secretion. We also show that SG population age is modulated by the β-cell environment in the mouse islets and in C57BL/6J islets exposed to different glucose environments.
在胰腺β细胞中,胰岛素分泌颗粒(SGs)存在于功能上不同的池中,其运动以及对接和融合能力存在差异。目前增加胰岛素分泌的疗法并没有考虑到这些不同的 SG 池的存在。因此,这些方法仅在短期内有效,随着β细胞功能的持续下降,血糖恶化与随之而来的情况。胰岛素颗粒的年龄作为一个决定因素,说明为什么选择一个胰岛素颗粒进行分泌,并且可以解释为什么新合成的胰岛素优先从β细胞分泌。在这里,我们使用一种新型荧光计时蛋白,旨在研究胰岛素分泌的优先分泌模型,并确定颗粒老化如何受到β细胞环境变化的影响,例如高血糖。我们展示了使用荧光计时蛋白构建体,syncollin-dsRedE5TIMER,其在 18 小时内从绿色变为红色,可用于显微镜和荧光辅助细胞器分选技术。我们证实,该 SG 靶向构建体定位于β细胞中的胰岛素颗粒,并且不会干扰正常的胰岛素 SG 行为。我们在 MIN6 和 INS1 β细胞系以及原代 C57BL/6J 小鼠和非糖尿病人类胰岛细胞中观察到胰岛素 SG 老化行为。最后,我们分离了年轻和年老的胰岛素 SG,结果表明年轻颗粒的优先分泌发生在葡萄糖刺激的胰岛素分泌中。我们还表明,SG 群体的年龄受β细胞环境的调节,在小鼠胰岛中,以及在暴露于不同葡萄糖环境的 C57BL/6J 胰岛中。