Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
Center for Genomics and Bioinformatics, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.
Nat Commun. 2020 Apr 28;11(1):2060. doi: 10.1038/s41467-020-15465-9.
Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.
利用重组蛋白的单分子方法已经产生了关于机械力如何在生物组织中产生和感知的变革性假设。然而,使用传统工具在蛋白质的天然环境中测试这些机械假设仍然难以实现。为了解决这一限制,我们在这里展示了一个携带 HaloTag-TEV 插入物的小鼠模型,该插入物位于肌球蛋白的主要决定因素肌联蛋白中。使用我们的系统,我们通过使用 TEV 蛋白酶进行消化来特异性地切断肌联蛋白,并且发现肌肉纤维对长度变化的反应需要通过肌联蛋白完整的多肽链进行机械转导。此外,基于 HaloTag 的共价连接允许使用磁镊在力下检查肌联蛋白的动力学。在拉力<10 pN 的情况下,肌联蛋白结构域募集到展开状态,并在重折叠过程中产生 41.5 zJ 的机械功。机械蛋白中 HaloTag-TEV 盒的插入为探索细胞力产生、机械传感和机械转导的分子基础提供了机会。